
INCREMENTAL LATTICE DETERMINIZATION FOR WFST DECODERS

Zhehuai Chen1, Mahsa Yarmohammadi2, Hainan Xu2, Hang Lv2,4
Lei Xie4, Daniel Povey2,3, Sanjeev Khudanpur2,3

1SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Center for Language and Speech Processing & 3HLTCOE, Johns Hopkins University
4ASLP@NPU, School of Computer Science, Northwestern Polytechnical University

chenzhehuai@sjtu.edu.cn, {hanglv,lxie}@nwpu-aslp.org, {mahsa,hxu31,dpovey1,khudanpur}@jhu.edu

ABSTRACT

We introduce a lattice determinization algorithm that can operate
incrementally. That is, a word-level lattice can be generated for a
partial utterance and then, once we have processed more audio, we
can obtain a word-level lattice for the extended utterance without
redoing all the work of lattice determinization. This is relevant for
ASR decoders such as those used in Kaldi, which first generate a
state-level lattice and then convert it to a word-level lattice using
a determinization algorithm in a special semiring. Our incremen-
tal determinization algorithm is useful when word-level lattices are
needed prior to the end of the utterance, and also reduces the latency
due to determinization at the end of the utterance.

Index Terms— ASR, WFST, Lattice, Determinization, Incre-
mental, Latency.

1. INTRODUCTION

In Automatic Speech Recognition (ASR), lattices are representations
of the most likely word-sequences that might correspond to a de-
coded utterance. Essentially a lattice is an acyclic graph with words
on the edges, but in various settings they might come with additional
information such as timing, phone-level or state-level alignment,
acoustic and language model scores, and so on.

Exact lattice generation [1] is a method of generating word-
level lattices by having the decoder first generate a state-level lattice,
and then converting to a word-level lattice with a determinization
algorithm using a special semiring that only preserves the best state
alignment for each word-sequence. It is, in a certain sense, “exact”
as it avoids approximations like the word-pair assumptions that are
necessary in more traditional lattice generation methods [2].

The problem we are trying to solve is that if we are decoding a
long utterance and want the word-level lattice to be available in real-
time, standard determinization algorithms give us no way to re-use
previously done work; we would have to redeterminize the whole
state-level lattice each time we decode more of the utterance. More-
over, in real-time streaming scenarios we would incur a perceptible
latency at the end of long utterances, by having to determinize the
entire lattice. By doing it incrementally we can reduce this latency.

This work was partially supported by the IARPA MATERIAL program,
NSF CRI Grant No 1513128, and an unrestricted gift from Google. The first
author was supported by the National Key Research and Development Pro-
gram of China under Grant No.2017YFB1002102, the China NSFC project
(No. 61573241) and the Shanghai International Science and Technology
Cooperation Fund (No. 16550720300).

The rest of the paper is organized as follows. Finite state ma-
chines and the notion of determinization are introduced in Section 2.
The incremental determinization algorithm is proposed in Section 5
and applied to lattice processing in Section 6. Experiments con-
ducted on the LibriSpeech corpus are described in Section 7, fol-
lowed by conclusions in Section 8.

2. FINITE STATE ACCEPTORS AND TRANSDUCERS

Readers familiar with the literature on finite state acceptors (FSAs)
and transducers (FSTs) may skip this section.

We give neither a precise nor a complete account of FSAs or
FSTs or of determinization, but it will be helpful, for background,
to give the reader some intuitions that will make it easier to read the
more technical literature on this topic such as [3].

A finite state automaton (FSA) is like a directed graph with
symbols on the edges (we call the edges “arcs” in this context), plus
an initial state and final states. A weighted finite state automaton
(WFSA) is the same, but with weights on the edges (and on the final
states). A weighted finite state transducer (WFST) is like a weighted
FSA but with two symbols on each edge (an “input” and “output”
symbol). In all these cases, a special symbol ε (epsilon) is allowed
where a normal symbol would normally occur; this means “there is
no symbol here”. An FSA is said to accept a sequence if there is a
path from the initial state to a final-state with exactly that sequence
on its arcs (not counting ε’s).

2.1. Equivalence

Two FSAs are equivalent if they accept the same set of symbol
sequences. WFSAs are equivalent if they accept the same symbol
sequences with the same weights. For WFSTs, when testing equiva-
lence we are not comparing sequences but pairs of sequences: (input-
sequence, output-sequence). Equivalence is an important notion here
because determinization must preserve equivalence.

2.2. Semirings

The word “semiring” is often encountered in the FST literature.
Semirings can be thought of as a generalization of real-valued
weights; a semiring is a set of objects that must contain two special
elements, named 0 and 1; and two operators named addition (+) and
multiplication (×); and these must all satisfy certain axioms.

If the FST represents a Markov model and the weights represent
probabilities, we would multiply the weights along paths and, if
we encounter alternative paths with the same symbols on them, we

1978-1-7281-0306-8/19/$31.00 ©2019 IEEE ASRU 2019

would sum the weights. This corresponds to the “real semiring”,
where 0, 1, + and × all have their everyday interpretation. If we
were concerned about numerical overflow we might store these prob-
abilities in log-space, and this is called the “log semiring”. If we
were using an FST to solve some kind of shortest-path problem, we
would sum weights along paths and take the minimum if there were
two paths with the same symbol sequence. This is called the “tropi-
cal semiring”. There are also more complicated semirings involving
symbol sequences (“gallic semiring”) and so on; new semirings are
easy to construct as the axioms are not hard to satisfy. See [4, 5] for
the technical explanation.

2.3. Deterministic FSAs

The notion of being “deterministic” is defined for finite state accep-
tors, not transducers. When we speak of determinizing transducers it
always involves some kind of trick to turn the transducer into an ac-
ceptor first, and the specific trick depends on the context. Generally
it means either encoding the output symbol into the weight (“gallic
semiring”) leaving only the input symbol, or encoding symbol pairs
into single symbols.

A finite state acceptor is deterministic if no state has two arcs
leaving it with the same symbol. It is ε-free if it has no arcs with the
symbol ε. These two notions are connected because in most of the
situations where we want an automaton to be deterministic, we also
want it to be ε-free.

2.4. Determinization algorithms

The task of determinization, whether in an FSA or WFSA context,
is, for a given input, to find a deterministic equivalent. This is
always possible for FSAs and for acyclic WFSAs, but there are some
WFSAs that do not have a deterministic equivalent (c.f. the “twins
property” [6]).

In [7], ε-removal is separated from determinization, i.e. we first
remove arcs with ε (preserving equivalence, of course) and then
determinize. There is older literature in which determinization and
ε-removal are done as part of the same algorithm [3]. Removing ε’s
separately from determinization is very convenient for explanation
and proof, but there are situations where it is not practical: for in-
stance, in the “exact” lattice generation scenario in [1] there are too
many ε’s to remove without having the graph blow up enormously.
The determinization algorithm used in the implementation of the
“exact lattice generation” paper removes ε’s as part of determiniza-
tion.

Determinization algorithms operate on sets of states (or, in the
weighted case, weighted sets of states). A set of states in the input
FSA corresponds to a single state in the output FSA. The algorithm
maintains a map from sets of states in the input FSA, to states in the
output FSA; there is a queue of sets/output-states that have not been
processed yet. Processing one of these sets involves enumerating
all the symbols that could leave any state in the set, and for each
symbol, finding the “successor set”. If ε removal is done as part of
the determinization algorithm, ε arcs have to be treated specially.

2.5. Pruned determinization

The task of pruned determinization is the same as that of deter-
minization except we are not required to preserve paths in the output
whose weight is too much worse than that of the best path. The
motivation is to avoid the determinization “blowing up” the size of
the lattice, which can occasionally happen in the ASR context [8].

The user would specify a beam (lattice-beam, in Kaldi), and possibly
a maximum allowed number of states or arcs. Converting a normal
determinization algorithm to a pruned determinization algorithm es-
sentially means using a priority queue instead of a normal queue, and
adding a stopping criterion. Computing the appropriate priorities
requires working out in advance, for each state, the weight from that
state to the end of the input WFSA, called the β score.

Before running the determinization algorithm we always prune
the state-level lattice, removing any arcs and states that are not within
lattice-beam of the best path.

2.6. Determinization for lattices

In “exact lattice generation” [1] we construct a word-level lattice by
determinizing a state-level lattice. A state-level lattice has a state for
each pair (decoding-graph-state, frame) that was not pruned away
during decoding, and each arc spans at most one frame. When we
determinize this, we determinize on the word level. During deter-
minization we view the state-level lattice as an acceptor whose labels
correspond to words (these will be ε for most arcs); the senone1

labels are encoded into the weight. The specific semiring is de-
scribed in [1]; the idea is to keep only the senones from the best
path corresponding to each word sequence. We determinize this
state-level lattice in an algorithm that also incorporates ε removal
and pruning.

3. RELATED WORK

Previous work has addressed (offline) determinizing non-functional
WFSTs such that a single best-scoring path of each input sequence
along with the best output sequence is generated. These methods
work by designing semirings with special binary operations, map-
ping the WFST into an equivalent WFSA in the designed semirings,
applying WFSA determinization, and finally converting the results
back to a WFST that preserves arc-level alignments. Povey et al. [1]
described their method in the context of an exact ASR lattice gener-
ation task. In similar work, [9] and [10] used a special lexicographic
semiring for the task of part-of-speech tagging disambiguation, and
[11] used this semiring for hierarchical phrase-based decoding with
push-down automata in statistical machine translation. In a related
work, [12] presented a faster disambiguation algorithm showcased
in the re-scoring task of a machine translation system with bilingual
neural networks.

Rybach et al. [8] presented an optimization method for deter-
minization followed by minimization, that produces a deterministic
minimal ASR lattice that retains all paths within specified weight
and lattice size thresholds. To create compact lattices, they apply in
sequence pruning, weighted determinization, and minimization.

Some related work proposed algorithms for incremental deter-
minization of acyclic [13] and cyclic [14] finite automata. In the
case that a non-deterministic finite automaton (NFA) is repeatedly
extended, these algorithms make up the new deterministic finite au-
tomaton (DFA) as an extension of the previous DFA. Rather than
starting from scratch the generation of the DFA equivalent to the new
NFA, the algorithm applies the set of actions which are sufficient
for transforming the previous DFA into the new DFA. As concluded
in [14], if expanding automata includes ε-transitions, the proposed
incremental determinization is not always the best choice as opposed
to the regular determinization. In fact, the choice depends to a large
extent on the specific application domain.

1context-dependent HMM state, or phone

2

4. INCREMENTAL DETERMINIZATION: OVERVIEW

Suppose we were to first cut the FSA to be determinized into mul-
tiple consecutive pieces, corresponding (for instance) to ranges of
frames in a lattice. We would like to determinize these pieces sepa-
rately and then somehow connect them together. We devised a way
to connect the pieces together while keeping the result deterministic,
by introducing special symbols at the points where we split apart the
input FSA; the special symbols correspond to the states at the cut
points.

When we determinize a new chunk, we also need to redo the de-
terminization for a subset of the states of the previously determinized
part–essentially, the states which have arcs that end in final-states
and which are reachable from such states. These become part of the
new piece to be determinized. This means that when the chunk size
gets smaller than approximately the length of a word in frames, we
start doing significant extra work.

5. INCREMENTAL DETERMINIZATION: SIMPLE CASE

To explain the basic principle of our algorithm, we consider a sim-
plified case. Suppose we are determinizing an unweighted acceptor
(FSA) F , and we want to do the determinization in two pieces.

We divide the states in the FSA into two nonempty sets A and
B, with the property that for any s ∈ B, the destination-states of
arcs leaving s are also in B. (Intuition: ”consecutive pieces”). An
example of FSAsA and B are shown in Figure 1(a). We are going to
first determinize the states in A and then those in B. The algorithm
inserts special symbols that we call state labels (because they iden-
tify states in FSTs) to make it possible to (mostly) separate the two
pieces.

5.1. Determinizing the first half

We firstly construct the FSA A as follows. Its states are:

• All states s ∈ A (these are final if they were final in F).

• Those states in B to which an arc exists from a state in A;
these are not final.

• An extra final-state f .

For each state s ∈ B that is included in FSA A, we add an arc
from s to the extra final-state f , with a specially created label that
will identify the state s. We call these labels state labels. We then
determinize FSA A; call the result det(A). We are using a notation
where the det operator includes ε-removal, so the result is ε-free. An
example of FSA A and det(A) are shown in Figure 1(b).

5.2. Determinizing the second half

We next construct the FSA B. The construction of B is a little more
complicated than that of A because we need to include some infor-
mation from det(A) as well as from F . For purposes of exposition,
we assume that the state labels used for det(A) do not overlap with
those in F or A.

Define a redeterminized state as a state in det(A) that has an
arc with a state label leaving it, or which is reachable from such a
state. A non-redeterminized state is a state in det(A) that is not a
redeterminized state.

Any state in det(A) which has an arc with a state label entering
it will be final and will only have arcs with state labels entering it.
Call this a splice state (because it can be thought of as the place

8

1W3

5

2<eps> 3
W1

4<eps> 10

W56<eps>
11

12

<eps>

<eps>

W4

7W3

W39W2

4. INCREMENTAL DETERMINIZATION: SIMPLE CASE

The problem we are trying to solve in incremental determinization is
that if we are decoding a long utterance and want the word-level lat-
tice to be available in real-time, the lattice determinization algorithm
proposed in [1] gives us no way to re-use previously done work; we
would have to redeterminize the whole state level lattice each time
we decode more of the utterance. Also in real-time scenarios we
would incur a perceptible latency at the end of long utterances, by
having to determinize the entire lattice. By determinizing incremen-
tally we can reduce this latency.

To explain the basic principle of our algorithm, we will explain
a much simpler case. Suppose we are determinizing an unweighted
acceptor (FSA) F , and we want to do the determinization in two
pieces.

We divide the states in the FSA into two nonempty sets A and
B, with the property that for any s 2 B, the destination-states of arcs
leaving s are also in B. We are going to first determinize the states
in A and then those in B. The algorithm inserts special symbols that
we call state labels (because they identify states in FSTs) to make it
possible to (mostly) separate the two pieces.

4.1. Determinizing the first half

We firstly construct the FSA A as follows. Its states are:

• All states s 2 A (these are final if they were final in F).

• Those states in B to which an arc exists from a state in A;
these are not final.

• An extra final-state f .

For each state s 2 B that is included in FSA A, we add an arc
from s to the extra final-state f , with a specially created label that
will identify the state s. We call these labels state labels. We then
determinize FSA A; call the result det(A). We are using a notation
where the det operator includes ✏-removal, so the result is ✏-free.
An example of FSA A and det(A) are shown in Figure 1(a) and (b)
respectively.

4.2. Determinizing the second half

We next construct the FSA B. The construction of B is a little more
complicated than that of A because we need to include some infor-
mation from det(A) as well as from F . For purposes of exposition,
we assume that the state labels used for det(A) don’t overlap with
those in F or A.

Define a redeterminized state as a state in det(A) that has an
arc with a state label leaving it, or which is reachable from such a
state. A non-redeterminized state is a state in det(A) that is not a
redeterminized state.

Any state in det(A) which has an arc with a state label entering
it will be final and will only have arcs with state labels entering it.
Call this a splice state (because it can be thought of as the place
where we splice det(A) and B together). Splice states will also be
redeterminized states.

The states in the FSA B are:

• An initial state i.

• Each of the redeterminized states in det(A) mentioned above
which is not also a splice state; these are final if they were
final in det(A).

• All states in B; these are final if they were final in F .

We add arcs to B as follows:

Fig. 1. Examples of incremental determinizing FSA F in Section 4.
The arc symbols include words (W1, W2, . . .), state labels (T1, T2,
. . .) in FSA A and state labels (S1, S2, . . .) in FSA B. The states of
gradient colors are redeterminized states.

• All arcs leaving states in B
• Arcs from i to each redeterminized state that is either initial

in det(A) or that has an arc entering it from a state that is
not a redeterminized state. We put labels on these arcs (state
labels) which identify the destination redeterminized states.

• All arcs leaving redeterminized states that are not splice
states; but if the destination state was a splice state, we make
the arc in B end at the state in B identified by the label on the
arc; and the label on the arc in B will be ✏.

An example of FSA B is shown in Figure 1(c). Then of course
we determinize B to get det(B).

4.3. Connecting the pieces together

We connect det(A) and det(B) together as follows to construct a
spliced-together FST C. Again, assume the state labels of det(A)
and det(B) don’t overlap.

4. INCREMENTAL DETERMINIZATION: SIMPLE CASE

The problem we are trying to solve in incremental determinization is
that if we are decoding a long utterance and want the word-level lat-
tice to be available in real-time, the lattice determinization algorithm
proposed in [1] gives us no way to re-use previously done work; we
would have to redeterminize the whole state level lattice each time
we decode more of the utterance. Also in real-time scenarios we
would incur a perceptible latency at the end of long utterances, by
having to determinize the entire lattice. By determinizing incremen-
tally we can reduce this latency.

To explain the basic principle of our algorithm, we will explain
a much simpler case. Suppose we are determinizing an unweighted
acceptor (FSA) F , and we want to do the determinization in two
pieces.

We divide the states in the FSA into two nonempty sets A and
B, with the property that for any s 2 B, the destination-states of arcs
leaving s are also in B. We are going to first determinize the states
in A and then those in B. The algorithm inserts special symbols that
we call state labels (because they identify states in FSTs) to make it
possible to (mostly) separate the two pieces.

4.1. Determinizing the first half

We firstly construct the FSA A as follows. Its states are:

• All states s 2 A (these are final if they were final in F).

• Those states in B to which an arc exists from a state in A;
these are not final.

• An extra final-state f .

For each state s 2 B that is included in FSA A, we add an arc
from s to the extra final-state f , with a specially created label that
will identify the state s. We call these labels state labels. We then
determinize FSA A; call the result det(A). We are using a notation
where the det operator includes ✏-removal, so the result is ✏-free.
An example of FSA A and det(A) are shown in Figure 1(a) and (b)
respectively.

4.2. Determinizing the second half

We next construct the FSA B. The construction of B is a little more
complicated than that of A because we need to include some infor-
mation from det(A) as well as from F . For purposes of exposition,
we assume that the state labels used for det(A) don’t overlap with
those in F or A.

Define a redeterminized state as a state in det(A) that has an
arc with a state label leaving it, or which is reachable from such a
state. A non-redeterminized state is a state in det(A) that is not a
redeterminized state.

Any state in det(A) which has an arc with a state label entering
it will be final and will only have arcs with state labels entering it.
Call this a splice state (because it can be thought of as the place
where we splice det(A) and B together). Splice states will also be
redeterminized states.

The states in the FSA B are:

• An initial state i.

• Each of the redeterminized states in det(A) mentioned above
which is not also a splice state; these are final if they were
final in det(A).

• All states in B; these are final if they were final in F .

We add arcs to B as follows:

Fig. 1. Examples of incremental determinizing FSA F in Section 4.
The arc symbols include words (W1, W2, . . .), state labels (T1, T2,
. . .) in FSA A and state labels (S1, S2, . . .) in FSA B. The states of
gradient colors are redeterminized states.

• All arcs leaving states in B
• Arcs from i to each redeterminized state that is either initial

in det(A) or that has an arc entering it from a state that is
not a redeterminized state. We put labels on these arcs (state
labels) which identify the destination redeterminized states.

• All arcs leaving redeterminized states that are not splice
states; but if the destination state was a splice state, we make
the arc in B end at the state in B identified by the label on the
arc; and the label on the arc in B will be ✏.

An example of FSA B is shown in Figure 1(c). Then of course
we determinize B to get det(B).

4.3. Connecting the pieces together

We connect det(A) and det(B) together as follows to construct a
spliced-together FST C. Again, assume the state labels of det(A)
and det(B) don’t overlap.

a)

4. INCREMENTAL DETERMINIZATION: SIMPLE CASE

The problem we are trying to solve in incremental determinization is
that if we are decoding a long utterance and want the word-level lat-
tice to be available in real-time, the lattice determinization algorithm
proposed in [1] gives us no way to re-use previously done work; we
would have to redeterminize the whole state level lattice each time
we decode more of the utterance. Also in real-time scenarios we
would incur a perceptible latency at the end of long utterances, by
having to determinize the entire lattice. By determinizing incremen-
tally we can reduce this latency.

To explain the basic principle of our algorithm, we will explain
a much simpler case. Suppose we are determinizing an unweighted
acceptor (FSA) F , and we want to do the determinization in two
pieces.

We divide the states in the FSA into two nonempty sets A and
B, with the property that for any s 2 B, the destination-states of arcs
leaving s are also in B. We are going to first determinize the states
in A and then those in B. The algorithm inserts special symbols that
we call state labels (because they identify states in FSTs) to make it
possible to (mostly) separate the two pieces.

4.1. Determinizing the first half

We firstly construct the FSA A as follows. Its states are:

• All states s 2 A (these are final if they were final in F).

• Those states in B to which an arc exists from a state in A;
these are not final.

• An extra final-state f .

For each state s 2 B that is included in FSA A, we add an arc
from s to the extra final-state f , with a specially created label that
will identify the state s. We call these labels state labels. We then
determinize FSA A; call the result det(A). We are using a notation
where the det operator includes ✏-removal, so the result is ✏-free.
An example of FSA A and det(A) are shown in Figure 1(a) and (b)
respectively.

4.2. Determinizing the second half

We next construct the FSA B. The construction of B is a little more
complicated than that of A because we need to include some infor-
mation from det(A) as well as from F . For purposes of exposition,
we assume that the state labels used for det(A) don’t overlap with
those in F or A.

Define a redeterminized state as a state in det(A) that has an
arc with a state label leaving it, or which is reachable from such a
state. A non-redeterminized state is a state in det(A) that is not a
redeterminized state.

Any state in det(A) which has an arc with a state label entering
it will be final and will only have arcs with state labels entering it.
Call this a splice state (because it can be thought of as the place
where we splice det(A) and B together). Splice states will also be
redeterminized states.

The states in the FSA B are:

• An initial state i.

• Each of the redeterminized states in det(A) mentioned above
which is not also a splice state; these are final if they were
final in det(A).

• All states in B; these are final if they were final in F .

We add arcs to B as follows:

Fig. 1. Examples of incremental determinizing FSA F in Section 4.
The arc symbols include words (W1, W2, . . .), state labels (T1, T2,
. . .) in FSA A and state labels (S1, S2, . . .) in FSA B. The states of
gradient colors are redeterminized states.

• All arcs leaving states in B
• Arcs from i to each redeterminized state that is either initial

in det(A) or that has an arc entering it from a state that is
not a redeterminized state. We put labels on these arcs (state
labels) which identify the destination redeterminized states.

• All arcs leaving redeterminized states that are not splice
states; but if the destination state was a splice state, we make
the arc in B end at the state in B identified by the label on the
arc; and the label on the arc in B will be ✏.

An example of FSA B is shown in Figure 1(c). Then of course
we determinize B to get det(B).

4.3. Connecting the pieces together

We connect det(A) and det(B) together as follows to construct a
spliced-together FST C. Again, assume the state labels of det(A)
and det(B) don’t overlap.

b)

4. INCREMENTAL DETERMINIZATION: SIMPLE CASE

The problem we are trying to solve in incremental determinization is
that if we are decoding a long utterance and want the word-level lat-
tice to be available in real-time, the lattice determinization algorithm
proposed in [1] gives us no way to re-use previously done work; we
would have to redeterminize the whole state level lattice each time
we decode more of the utterance. Also in real-time scenarios we
would incur a perceptible latency at the end of long utterances, by
having to determinize the entire lattice. By determinizing incremen-
tally we can reduce this latency.

To explain the basic principle of our algorithm, we will explain
a much simpler case. Suppose we are determinizing an unweighted
acceptor (FSA) F , and we want to do the determinization in two
pieces.

We divide the states in the FSA into two nonempty sets A and
B, with the property that for any s 2 B, the destination-states of arcs
leaving s are also in B. We are going to first determinize the states
in A and then those in B. The algorithm inserts special symbols that
we call state labels (because they identify states in FSTs) to make it
possible to (mostly) separate the two pieces.

4.1. Determinizing the first half

We firstly construct the FSA A as follows. Its states are:

• All states s 2 A (these are final if they were final in F).

• Those states in B to which an arc exists from a state in A;
these are not final.

• An extra final-state f .

For each state s 2 B that is included in FSA A, we add an arc
from s to the extra final-state f , with a specially created label that
will identify the state s. We call these labels state labels. We then
determinize FSA A; call the result det(A). We are using a notation
where the det operator includes ✏-removal, so the result is ✏-free.
An example of FSA A and det(A) are shown in Figure 1(a) and (b)
respectively.

4.2. Determinizing the second half

We next construct the FSA B. The construction of B is a little more
complicated than that of A because we need to include some infor-
mation from det(A) as well as from F . For purposes of exposition,
we assume that the state labels used for det(A) don’t overlap with
those in F or A.

Define a redeterminized state as a state in det(A) that has an
arc with a state label leaving it, or which is reachable from such a
state. A non-redeterminized state is a state in det(A) that is not a
redeterminized state.

Any state in det(A) which has an arc with a state label entering
it will be final and will only have arcs with state labels entering it.
Call this a splice state (because it can be thought of as the place
where we splice det(A) and B together). Splice states will also be
redeterminized states.

The states in the FSA B are:

• An initial state i.

• Each of the redeterminized states in det(A) mentioned above
which is not also a splice state; these are final if they were
final in det(A).

• All states in B; these are final if they were final in F .

We add arcs to B as follows:

Fig. 1. Examples of incremental determinizing FSA F in Section 4.
The arc symbols include words (W1, W2, . . .), state labels (T1, T2,
. . .) in FSA A and state labels (S1, S2, . . .) in FSA B. The states of
gradient colors are redeterminized states.

• All arcs leaving states in B
• Arcs from i to each redeterminized state that is either initial

in det(A) or that has an arc entering it from a state that is
not a redeterminized state. We put labels on these arcs (state
labels) which identify the destination redeterminized states.

• All arcs leaving redeterminized states that are not splice
states; but if the destination state was a splice state, we make
the arc in B end at the state in B identified by the label on the
arc; and the label on the arc in B will be ✏.

An example of FSA B is shown in Figure 1(c). Then of course
we determinize B to get det(B).

4.3. Connecting the pieces together

We connect det(A) and det(B) together as follows to construct a
spliced-together FST C. Again, assume the state labels of det(A)
and det(B) don’t overlap.

4. INCREMENTAL DETERMINIZATION: SIMPLE CASE

The problem we are trying to solve in incremental determinization is
that if we are decoding a long utterance and want the word-level lat-
tice to be available in real-time, the lattice determinization algorithm
proposed in [1] gives us no way to re-use previously done work; we
would have to redeterminize the whole state level lattice each time
we decode more of the utterance. Also in real-time scenarios we
would incur a perceptible latency at the end of long utterances, by
having to determinize the entire lattice. By determinizing incremen-
tally we can reduce this latency.

To explain the basic principle of our algorithm, we will explain
a much simpler case. Suppose we are determinizing an unweighted
acceptor (FSA) F , and we want to do the determinization in two
pieces.

We divide the states in the FSA into two nonempty sets A and
B, with the property that for any s 2 B, the destination-states of arcs
leaving s are also in B. We are going to first determinize the states
in A and then those in B. The algorithm inserts special symbols that
we call state labels (because they identify states in FSTs) to make it
possible to (mostly) separate the two pieces.

4.1. Determinizing the first half

We firstly construct the FSA A as follows. Its states are:

• All states s 2 A (these are final if they were final in F).

• Those states in B to which an arc exists from a state in A;
these are not final.

• An extra final-state f .

For each state s 2 B that is included in FSA A, we add an arc
from s to the extra final-state f , with a specially created label that
will identify the state s. We call these labels state labels. We then
determinize FSA A; call the result det(A). We are using a notation
where the det operator includes ✏-removal, so the result is ✏-free.
An example of FSA A and det(A) are shown in Figure 1(a) and (b)
respectively.

4.2. Determinizing the second half

We next construct the FSA B. The construction of B is a little more
complicated than that of A because we need to include some infor-
mation from det(A) as well as from F . For purposes of exposition,
we assume that the state labels used for det(A) don’t overlap with
those in F or A.

Define a redeterminized state as a state in det(A) that has an
arc with a state label leaving it, or which is reachable from such a
state. A non-redeterminized state is a state in det(A) that is not a
redeterminized state.

Any state in det(A) which has an arc with a state label entering
it will be final and will only have arcs with state labels entering it.
Call this a splice state (because it can be thought of as the place
where we splice det(A) and B together). Splice states will also be
redeterminized states.

The states in the FSA B are:

• An initial state i.

• Each of the redeterminized states in det(A) mentioned above
which is not also a splice state; these are final if they were
final in det(A).

• All states in B; these are final if they were final in F .

We add arcs to B as follows:

Fig. 1. Examples of incremental determinizing FSA F in Section 4.
The arc symbols include words (W1, W2, . . .), state labels (T1, T2,
. . .) in FSA A and state labels (S1, S2, . . .) in FSA B. The states of
gradient colors are redeterminized states.

• All arcs leaving states in B
• Arcs from i to each redeterminized state that is either initial

in det(A) or that has an arc entering it from a state that is
not a redeterminized state. We put labels on these arcs (state
labels) which identify the destination redeterminized states.

• All arcs leaving redeterminized states that are not splice
states; but if the destination state was a splice state, we make
the arc in B end at the state in B identified by the label on the
arc; and the label on the arc in B will be ✏.

An example of FSA B is shown in Figure 1(c). Then of course
we determinize B to get det(B).

4.3. Connecting the pieces together

We connect det(A) and det(B) together as follows to construct a
spliced-together FST C. Again, assume the state labels of det(A)
and det(B) don’t overlap.

1W3

5

2<eps> 3
W1

4<eps>

6<eps><eps> 7W3

8<eps>

W2
9

10

T2

T3

T1

1
W3

2

W1
3

T2

T3

4
W2

T1

c)

1

2

W1

4
W20

10W3

W5 11

12
W4

S3

S4

S5

4. INCREMENTAL DETERMINIZATION: SIMPLE CASE

The problem we are trying to solve in incremental determinization is
that if we are decoding a long utterance and want the word-level lat-
tice to be available in real-time, the lattice determinization algorithm
proposed in [1] gives us no way to re-use previously done work; we
would have to redeterminize the whole state level lattice each time
we decode more of the utterance. Also in real-time scenarios we
would incur a perceptible latency at the end of long utterances, by
having to determinize the entire lattice. By determinizing incremen-
tally we can reduce this latency.

To explain the basic principle of our algorithm, we will explain
a much simpler case. Suppose we are determinizing an unweighted
acceptor (FSA) F , and we want to do the determinization in two
pieces.

We divide the states in the FSA into two nonempty sets A and
B, with the property that for any s 2 B, the destination-states of arcs
leaving s are also in B. We are going to first determinize the states
in A and then those in B. The algorithm inserts special symbols that
we call state labels (because they identify states in FSTs) to make it
possible to (mostly) separate the two pieces.

4.1. Determinizing the first half

We firstly construct the FSA A as follows. Its states are:

• All states s 2 A (these are final if they were final in F).

• Those states in B to which an arc exists from a state in A;
these are not final.

• An extra final-state f .

For each state s 2 B that is included in FSA A, we add an arc
from s to the extra final-state f , with a specially created label that
will identify the state s. We call these labels state labels. We then
determinize FSA A; call the result det(A). We are using a notation
where the det operator includes ✏-removal, so the result is ✏-free.
An example of FSA A and det(A) are shown in Figure 1(a) and (b)
respectively.

4.2. Determinizing the second half

We next construct the FSA B. The construction of B is a little more
complicated than that of A because we need to include some infor-
mation from det(A) as well as from F . For purposes of exposition,
we assume that the state labels used for det(A) don’t overlap with
those in F or A.

Define a redeterminized state as a state in det(A) that has an
arc with a state label leaving it, or which is reachable from such a
state. A non-redeterminized state is a state in det(A) that is not a
redeterminized state.

Any state in det(A) which has an arc with a state label entering
it will be final and will only have arcs with state labels entering it.
Call this a splice state (because it can be thought of as the place
where we splice det(A) and B together). Splice states will also be
redeterminized states.

The states in the FSA B are:

• An initial state i.

• Each of the redeterminized states in det(A) mentioned above
which is not also a splice state; these are final if they were
final in det(A).

• All states in B; these are final if they were final in F .

We add arcs to B as follows:

Fig. 1. Examples of incremental determinizing FSA F in Section 4.
The arc symbols include words (W1, W2, . . .), state labels (T1, T2,
. . .) in FSA A and state labels (S1, S2, . . .) in FSA B. The states of
gradient colors are redeterminized states.

• All arcs leaving states in B
• Arcs from i to each redeterminized state that is either initial

in det(A) or that has an arc entering it from a state that is
not a redeterminized state. We put labels on these arcs (state
labels) which identify the destination redeterminized states.

• All arcs leaving redeterminized states that are not splice
states; but if the destination state was a splice state, we make
the arc in B end at the state in B identified by the label on the
arc; and the label on the arc in B will be ✏.

An example of FSA B is shown in Figure 1(c). Then of course
we determinize B to get det(B).

4.3. Connecting the pieces together

We connect det(A) and det(B) together as follows to construct a
spliced-together FST C. Again, assume the state labels of det(A)
and det(B) don’t overlap.

Fig. 1. Examples of incremental determinizing FSA F in Section 5.
The arc symbols include words (W1, W2, . . .), state labels (T1, T2,
T3) in FSA A and state labels (S3, S4, S5) in FSA B. The states of
gradient colors are redeterminized states.

where we splice det(A) and B together). Splice states will also be
redeterminized states.

The states in the FSA B are:

• An initial state i.

• Each of the redeterminized states in det(A) mentioned above
which is not also a splice state; these are final if they were
final in det(A).

• All states in B; these are final if they were final in F .

We add arcs to B as follows:

• All arcs leaving states in B.

• Arcs from i to each redeterminized state that is either initial
in det(A) or that has an arc entering it from a state that is
not a redeterminized state. We put labels on these arcs (state
labels) which identify the destination redeterminized states.

• All arcs leaving redeterminized states that are not splice
states; but if the destination state was a splice state, we make
the arc in B end at the state in B identified by the label on the
arc; and the label on the arc in B will be ε.

An example of FSA B is shown in Figure 1(c). Then of course
we determinize B to get det(B).

5.3. Connecting the pieces together

We connect det(A) and det(B) together as follows to construct a
spliced-together FST C. Again, assume the state labels of det(A)
and det(B) do not overlap.

3

4

5

W1

6
W2

10W3

W5 11

12
W4

1

2

W1

3
W2

W3

<eps>

<eps>

<eps>

Fig. 2. The resultant FSA C after connecting the pieces in Fig-
ure 1(b) and (c) together. The states of gradient colors are redeter-
minized states before connecting. The dotted arcs are deleted after
connecting.

The states of C consist of:

• All non-redeterminized states in det(A).

• All states in det(B) which are not initial.

• Only if the initial state of det(A), i[det(A)], is a redeter-
minized state, we include i[det(B)] (this is a pathological
case where we do not re-use any work).

All arcs in det(B) except those leaving its initial state are included
in C. All arcs in det(A) that begin and end at non-redeterminized
states are included in C. For each arc leaving a non-redeterminized
state n in det(A) and entering a redeterminized state r, if there is an
arc from i[det(B)] with a label corresponding to r on it and entering
some state s, then we include in C an arc from n to s with label ε.

We let the initial state of C be the initial state of det(A) if it
is not a redeterminized state; otherwise we use the initial state of
det(B). An example of FSA C is shown in Figure 2.

5.4. Removing epsilons

The final result det(F) is obtained by removing ε’s from C; this is
quite straightforward to do since there will not be successive ε’s.

6. APPLICATION TO INCREMENTAL LATTICE
DETERMINIZATION

Above we explained the basic idea of algorithm for an unweighted
acceptor. There are a few other issues that come into play in incre-
mental lattice determinization.

One obvious issue is that we are splitting the state-level lattice
into not two, but many chunks, and for interior chunks we need
to put the special state label symbols mentioned above at both the
beginning and end of the chunk. We may also want to remove
non-coaccessible states (states that cannot reach a final-state) after
appending chunks together; these can arise due to pruning in Sec-
tion 2.5. We always do it once after the end of the utterance 2.
Another option is pruning the appended lattice with the same beam
in Section 2.5, called the final pruning after determinization

6.1. Handling weights

The FSTs we deal with in lattice generation are weighted, so there
are certain extra details that we need to take care of with regard to
the weights, when constructing the combined FST (for instance, tak-
ing final-probabilities into account when splicing the determinized

2The frequency can be controlled by users.

pieces together). This is fairly straightforward for those familiar with
FSTs; the reader may look at our code for more details3.

The lattice determinization algorithm works in a semiring where
both probabilities and alignment information are encoded into the
weight, but when we store the state-level lattice we do not use this
weight format; we put the alignment information on the input label.
This requires certain format changes in the application of the algo-
rithm above: for instance, when we include parts of det(A) in the
FST B mentioned above we need to change the format from Kaldi’s
“compact lattice” format (alignments in weights) to state-level lattice
format (alignments in ilabels).

6.2. Pruned determinization

Another issue that we need to bear in mind is that our determiniza-
tion algorithm actually uses pruning, as mentioned in Section 2.5.
This means that we need to take some extra care, when determinizing
chunks of the state-level lattice, to get the initial and final costs
right. (By “initial costs” we actually mean the probabilities on the
arcs from the initial state in non-initial chunks– the arcs that have
state labels on them). The initial costs would correspond to the
“forward cost” of those states in the lattice, and the final cost would
correspond to the “backward cost”, computed backward from the
most recently decoded frame using β scores in Section 2.5. After
determinizing the chunks we then need to cancel out these costs,
which is possible by referring to the state labels.

6.3. Deciding the chunks

We need to decide how to split up the state-level lattice into chunks to
be determinized. Essentially this is a user-level decision, but for our
experiments here we configure it with a determinize-period (which
is the number of frames we wait between forming chunks, e.g. 20).

There is also another parameter we use for our experiments here,
a determinize-delay which is the number of most-recently-decoded
frames that we exclude from being determinized (e.g. 10). The
reason for the determinize-delay parameter is that in the most recent
frames, there will tend to be a large number of states within the prun-
ing beam, which will make determinization slower. The following
paragraph explains the background to this, specifically: why only
recent frames have a large number of states active.

As mentioned in Section 2.5 we prune the state-level lattice be-
fore determinization. (This is a pre-existing feature of our decoders,
not something new). If we are not yet at the end of the utterance,
before doing this pruning we make each currently-active state final
with a cost that is the negative of the forward-cost of that state, so
each currently-active state is on a path with the same cost as the best
path. This guarantees that the pruning process will not remove any
path which will later have a cost that is worse than the best cost by
more than lattice-beam, as done in [15].

6.4. Adaptive chunking

A straightforward schedule would be determinizing the chunks at
fixed intervals of determinize-period defined in Section 6.3. How-
ever, it is more computationally efficient if we divide chunks so
that at the end of chunks there are fewer active states, resulting in
less information to keep track of and less computational overhead.
For this reason, we follow an “adaptive chunking” method to utilize
future information from backward costs to the lattice pruning phase.

3This should be part of Kaldi by the time of publication; search the code
for ’incremental’.

4

We pre-define a threshold, determinize-max-active. For every fixed
interval of determinize-period frames, we pick the longest chunk
possible whose last frame contains no more active states than this
threshold, and determinize up to there only; we skip determiniza-
tion for this step if no such chunk could be found. In either case,
the remaining unprocessed frames will be added to the subsequent
chunk. For the finalizing step, we process all the unprocessed frames
till the end. In the worst case scenario when this threshold was never
met before, all of the frames will be determinized in this last step,
however, this rarely happens for a reasonably-chosen determinize-
max-active value.

6.5. Partial determinization

Determinization for ASR lattices can occasionally blow up [8]; and
we do not want those pathological cases to cause our incremental
determinization algorithm to become very slow. Therefore we make
an option available to our algorithm to avoid re-determinizing states
that are too far back in the past. This is in addition to the pruned
determinization mentioned above. With reference to the notation
in Section 5, we make a small change to the structure of det(A),
namely: for any state s in det(A) that is more than redeterminize-
max-frames earlier than the last frame in det(A), and that has arcs
leaving it that have state labels and also arcs that have normal word
labels, we do the following procedure. We add a new state, put an
ε transition from s to that new state, and move the arcs with state
labels from s to that new state. This avoids the need to redeterminize
too many states that are far in the past. We remove the ε later on;
the result is a lattice that is not completely deterministic, meaning
a small percentage of states have more than one arc with the same
label on. (Most algorithms on lattices will work on incompletely-
determinized lattices.)

We do not show any experiments with partial determinization
because we were unable to find a scenario where it showed a clear
benefit (pathological blowup of determinization of ASR lattices is
quite rare).

7. EXPERIMENTAL RESULTS

7.1. Experimental Setup

In the LibriSpeech Corpus [16], we used a time-delay deep neural
network (TDNN) model trained by lattice-free maximum mutual
information (LF-MMI) criterion with the same setup in [17]. Evalu-
ation is carried out on dev other and test other sets in LibriSpeech 4.
The 3-gram language model in this corpus pruned with threshold
3 × 10−7 using SRILM [18] is used. The decoding baseline is
the Kaldi offline decoder [19], latgen-faster-mapped. We use beam
pruning and histogram pruning in decoding, and the lattice prun-
ing interval is 20. In the proposed method, we use determinize-
delay=20, determinize-period=20, determinize-max-active=50 (de-
fined in Section 6.3) and we do the final pruning after determiniza-
tion by default.

To evaluate the precision of the decoder, 1-best results and lattice
quality are both examined. We report word error rate (WER) for
the former, and lattice Oracle WER (OWER) [20] along with lattice
density (measured by arcs/frame) [21] for the latter. To show the
efficiency of the algorithm, we measure real-time factor (RTF) to
evaluate the decoding speed. Because of the focus of this work,

4These are more challenging test sets compared to dev clean and easier
to cause search errors in decoding algorithms.

Table 1. Incremental determinization vs. baseline determinization
Test
set

Incre- WER Oracle Lattice Latency RTF
mental? (%) WER (%) Density (ms) (no AM)

dev other × 10.88 1.80 25.55 37.32 0.76√
10.88 1.82 26.57 13.28 0.76

test other × 11.31 1.91 27.71 36.91 0.71√
11.31 1.92 28.92 14.32 0.70

we report RTFs excluding AM inference time 5, denoted as search
RTF (no AM). One of the main goals of this work is to reduce
online streaming latency. The practical latency can be related to
many factors 6: model latency during inference [22], WFST decod-
ing speed [23], and lattice processing here. As this work is mainly
focused on the lattice processing, we report Latency as the time
(measured by millisecond, ms) taken after decoding the last frame
until the decoding is done. This includes the time spent in final
lattice pruning and determinization and excludes the time spent in
model inference and decoding.

7.2. Performance

Table 1 compares incremental determinization with the baseline de-
coder with offline lattice determinization [1] on two test sets. The
incremental determinization algorithm is with the default settings
mentioned in Section 7.1. Both decoders get the same 1-best re-
sult since the incremental determinization only affects the lattice
processing. The proposed method obtains moderately larger lattice
densities with similar Oracle WER.

Incremental determinization significantly reduces the Latency
defined in Section 7.1. Our profiling shows that lattice determiniza-
tion of the baseline decoder causes around 60% of this utterance-end
latency, while that of the proposed method causes less than 10%.

Although the utterance-end latency improvements may seem
fairly modest (a factor of 3), the time taken for determinization
in the baseline decoder is proportional to the utterance length, so
the difference would be much more significant for long utterances
(average length here was 6 seconds).

7.3. Analysis

In this section, we further analyze this algorithm from several per-
spectives. Experiments reported are run on the test other set in this
section.

7.3.1. The effect of Adaptive Chunking

Table 2 shows the effect of adaptive chunking (AC) and the final
pruning after determinization (FP) in our incremental determiniza-
tion algorithm. By comparing rows 1, 2 and rows 3, 4, we see
that adaptive chunking always helps to reduce lattice density while
having similar OWERs, versus the non-adaptive, fixed determinize-
delay and determinize-period counterparts, regardless of whether fi-
nal pruning is used.

Adaptive chunking also reduces RTF. This is probably because it
leads to fewer tokens being active on the boundaries between chunks,

5 The AM inference RTF is 0.34 in our setup.
6Our preliminary experiments on typical online acoustic models and

WFST decoder show that lattice processing takes up more than half of the
overall latency.

5

Table 2. The effect of Final Pruning After Determinization (FP)
and Adaptive Chunking (AC)

FP AC WER Oracle Lattice Latency RTF
(%) WER(%) density (ms) (no AM)

× × 11.31 1.86 54.73 18.48 0.83
× √

11.31 1.88 36.91 13.98 0.70
√ × 11.31 1.94 31.14 21.71 0.84√ √

11.31 1.92 28.92 14.32 0.70

reducing the number of redeterminized-states. It also improves la-
tency, which is surprising, because it will cause the last chunk that
we determinize to be longer (on average).

7.3.2. The effect of determinize-delay

Figure 3 shows the effect of the determinize-delay defined in Sec-
tion 6.3, when both adaptive chunking and final pruning are turned
off. It shows that without the delay (determinize-delay = 0), the
lattice density and RTF are significantly larger. This is expected, be-
cause without the benefit of some future frames for pruning, we have
to determinize state-level lattices with too many states. The frame
shift at the neural net output is 30ms, so the default determinize-
delay of 20 corresponds to a delay of 0.6 seconds. This contributes
to the latency between decoding a frame and when the determinized
partial lattice can be obtained (applicable while we are decoding
an utterance, not at the final frame), so for applications where a
determinized lattice is desired in real time, determinize-delay is a
key parameter that trades off between latency and real-time factor.
Caution: this is not the same as the latency referred to in the tables,
which is always utterance-end latency.

7.3.3. The effect of determinize-period

Figure 4 shows the effect of varying determinize-period, with
determinize-delay fixed at 20, and without final lattice pruning.
Larger determinize-period reduces lattice density because of better
pruning and fewer chunks to be processed. (The difference in lattice
density would be greatly reduced if we used final pruning). As
with determinize-period, larger determinize-delay will increase the
average within-utterance latency.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0

10

20

30

40

50

60

70

80

90

100

0 5 10 20 30 40
determinize-delay (frames)

Lattice density (arcs/frame) RTF (no AM)

Fig. 3. Lattice density and RTF (no AM) vs. determinize-delay
(OWER=1.87).

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0

10

20

30

40

50

60

70

80

90

10 20 30 50 100
determinize-period (frames)

Lattice density (arcs/frame) RTF (no AM)

Fig. 4. Lattice density and RTF (no AM) vs. determinize-period
(OWER=1.87).

7.3.4. The effect of redeterminize-max-frames

Redeterminize-max-frames is a parameter that can be set to avoid
redeterminizing already-determinized states that are too far back in
time. Our default value of infinity means that we will determinize as
many states as necessary to ensure fully deterministic output. This
parameter was introduced mostly as a mechanism to limit the effect
of pathological data or models on determinization time.

Table 3 shows the effect of setting this parameter to finite val-
ues. As we decrease it, lattice density increases and Oracle WER
improves slightly, and the proportion of states in the lattice that are
deterministic decreases. (The nondeterminism of the lattices may or
may not be a problem, depending on the downstream task.)

Table 3. The Effect of redeterminize-max-frames.

Redet. Frames Oracle Lattice Det. Portion (%)WER(%) density

3 1.83 67.78 96.29
5 1.84 63.81 97.79
10 1.85 59.07 99.26
20 1.86 56.21 99.93
Inf. 1.86 54.73 100

8. CONCLUSION

We have introduced a lattice determinization algorithm that can op-
erate on an input FSA that arrives incrementally, as in real-time
decoding for ASR. (Note: this is different from on-demand deter-
minization, which is where the input is all known at once but the
states of the output are obtained only as requested). Our algorithm
is useful when word-level lattices are needed prior to the end of the
utterance, and it also reduces the latency due to determinization at
the end of the utterance.

Future work may include the combination of the proposed
method and other speedups of ASR decoding, e.g. GPU WFST
decoding [23] and phone synchronous decoding [24].

9. REFERENCES

[1] Daniel Povey, Mirko Hannemann, Gilles Boulianne, Lukáš
Burget, Arnab Ghoshal, Miloš Janda, Martin Karafiát, Stefan

6

Kombrink, Petr Motlı́ček, Yanmin Qian, et al., “Generating
exact lattices in the WFST framework,” in 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2012, pp. 4213–4216.

[2] Xavier Aubert and Hermann Ney, “Large vocabulary contin-
uous speech recognition using word graphs,” in 1995 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 1995, pp. 49–52.

[3] Mehryar Mohri, “Weighted automata algorithms,” in Hand-
book of weighted automata, pp. 213–254. Springer, 2009.

[4] Werner Kuich and Arto Salomaa, Semirings, Automata, Lan-
guages, Monographs in Theoretical Computer Science. An
EATCS Series. Springer Berlin Heidelberg, 2012.

[5] Jonathan Golan, Semirings and their Applications, Springer
Science & Business Media, 2013.

[6] Cyril Allauzen and Mehryar Mohri, “Efficient algorithms for
testing the twins property,” Journal of Automata, Languages
and Combinatorics, vol. 8, no. 2, pp. 117–144, 2003.

[7] Takaaki Hori and Atsushi Nakamura, “Speech recognition
algorithms using weighted finite-state transducers,” Synthesis
Lectures on Speech and Audio Processing, vol. 9, no. 1, pp.
1–162, 2013.

[8] David Rybach, Michael Riley, and Johan Schalkwyk, “On
lattice generation for large vocabulary speech recognition,” in
2017 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU). IEEE, 2017, pp. 228–235.

[9] Izhak Shafran, Richard Sproat, Mahsa Yarmohammadi, and
Brian Roark, “Efficient determinization of tagged word lattices
using categorial and lexicographic semirings,” in 2011 IEEE
Workshop on Automatic Speech Recognition and Understand-
ing (ASRU). IEEE, 2011, pp. 283–288.

[10] Richard Sproat, Mahsa Yarmohammadi, Izhak Shafran, and
Brian Roark, “Applications of lexicographic semirings to
problems in speech and language processing,” Computational
Linguistics, vol. 40, no. 4, pp. 733–761, 2014.

[11] Cyril Allauzen, Bill Byrne, Adrià de Gispert, Gonzalo Iglesias,
and Michael Riley, “Pushdown automata in statistical machine
translation,” Computational Linguistics, vol. 40, no. 3, pp.
687–723, 2014.

[12] Gonzalo Iglesias, Adrià de Gispert, and Bill Byrne, “Trans-
ducer disambiguation with sparse topological features,” in
Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2015, pp. 2275–
2280.

[13] Gianfranco Lamperti and Michele Scandale, “From diagno-
sis of active systems to incremental determinization of finite
acyclic automata,” AI Communications, vol. 26, no. 4, pp. 373–
393, 2013.

[14] Simone Brognoli, Gianfranco Lamperti, and Michele Scan-
dale, “Incremental determinization of expanding automata,”
The Computer Journal, vol. 59, no. 12, pp. 1872–1899, 2016.

[15] Andrej Ljolje, Fernando Pereira, and Michael Riley, “Efficient
general lattice generation and rescoring,” in Sixth European
Conference on Speech Communication and Technology, 1999.

[16] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “LibriSpeech: an ASR corpus based on public
domain audio books,” in 2015 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2015, pp. 5206–5210.

[17] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah
Ghahremani, Vimal Manohar, Xingyu Na, Yiming Wang, and
Sanjeev Khudanpur, “Purely sequence-trained neural networks
for ASR based on lattice-free MMI,” in Interspeech, 2016, pp.
2751–2755.

[18] Andreas Stolcke, “SRILM - an extensible language modeling
toolkit,” in Seventh international conference on spoken lan-
guage processing, 2002.

[19] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, et al., “The Kaldi
speech recognition toolkit,” in 2011 IEEE Workshop on Auto-
matic Speech Recognition and Understanding (ASRU). IEEE,
2011.

[20] Björn Hoffmeister, Tobias Klein, Ralf Schlüter, and Hermann
Ney, “Frame based system combination and a comparison with
weighted ROVER and CNC,” in Ninth International Confer-
ence on Spoken Language Processing, 2006.

[21] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain,
Dan Kershaw, Xunying Liu, Gareth Moore, Julian Odell, Dave
Ollason, Dan Povey, et al., “The HTK book,” Cambridge
university engineering department, vol. 3, pp. 175, 2002.

[22] Vijayaditya Peddinti, Yiming Wang, Daniel Povey, and San-
jeev Khudanpur, “Low latency acoustic modeling using tempo-
ral convolution and LSTMs,” IEEE Signal Processing Letters,
vol. 25, no. 3, pp. 373–377, 2018.

[23] Zhehuai Chen, Justin Luitjens, Hainan Xu, Yiming Wang,
Daniel Povey, and Sanjeev Khudanpur, “A GPU-based WFST
decoder with exact lattice generation,” in Interspeech, 2018,
pp. 2212–2216.

[24] Zhehuai. Chen, Yimeng Zhuang, Yanmin Qian, and Kai Yu,
“Phone synchronous speech recognition with CTC lattices,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 1, pp. 90–101, 2017.

7

