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ABSTRACT

In this paper, we propose a domain adversarial training (DAT)
algorithm to alleviate the accented speech recognition prob-
lem. In order to reduce the mismatch between labeled source
domain data (“standard” accent) and unlabeled target domain
data (with heavy accents), we augment the learning objective
for a Kaldi TDNN network with a domain adversarial train-
ing (DAT) objective to encourage the model to learn accent-
invariant features. In experiments with three Mandarin ac-
cents, we show that DAT yields up to 7.45% relative char-
acter error rate (CER) reduction when we do not have tran-
scriptions of the accented speech, compared with the baseline
trained on standard accent data only. We also find a bene-
fit from DAT when used in combination with training from
automatic transcriptions on the accented data. Furthermore,
we find that DAT is always superior to multi-task learning for
accented speech recognition.

Index Terms— Domain adaptation, accent robust speech
recognition, domain adversarial training

1. INTRODUCTION

There has been significant progress in automatic speech
recognition (ASR) due to the development of Deep Learning
(DL). DL-HMM based acoustic models are dominating ASR
because of their outstanding performance [1]. However,
ASR on speech with background noise, room reverberation,
accents, etc. remains difficult even with DL [2]. One reason
is the mismatch between the training and test data, since it is
impossible to cover all kinds of test cases in the training data.
In order to alleviate the mismatch, many methods have been
proposed in the past from different perspectives such as the
front-end signal processing and back-end acoustic modeling.
Among these, domain adaptation is also of great interest for
robust speech recognition, especially for DL-based methods.

Domain adaptation aims for transferring a model trained
by the source domain data to the target domain using labeled
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(supervised) or unlabeled (unsupervised) target domain data.
The goal of domain adaptation is to eliminate or reduce the
mismatch between the training data and the test data. Our idea
is to learn domain-invariant features to alleviate the mismatch
with the help of adversarial training [3]. Adversarial train-
ing has been shown to be successful for domain adaptation
problems in the field of computer vision [4, 5, 6]. Recently,
it has been adopted to tackle noise robust speech recognition
as well [7, 8, 9]. In this paper, we focus on unsupervised
accent learning, to minimize expensive and time consuming
data labeling efforts.

Our experiments are carried out on large-vocabulary Man-
darin speech recognition. Here, the domains we are con-
cerned with are standard Mandarin vs. accented Mandarin.
Our ASR systems are based on the Kaldi Time Delay Neu-
ral Network (TDNN) [10] acoustic model using lattice-free
maximum mutual information (MMI) training criterion and
the cross-entropy (CE) objective simultaneously, while learn-
ing senone posteriors. We augment the TDNN with another
subnetwork to distinguish domain labels (accented vs. non-
accented), which propagates adversarial signals back to the
lower-level shared network to encourage the model to learn
domain-invariant features. Experiments show that DAT can
offer us up to 7.45% relative CER reduction. To understand
the impact of DAT when used in combination with training
using speech transcription, we compare the results with no
transcription to performance of systems using ASR-decoded
transcription and human transcription. As predicted, perfor-
mance is the best when human transcription on the target do-
main data is available. However, in training with ASR tran-
scription, adding the DAT objective continues to have positive
(though smaller) impact. Finally we compare DAT with the
traditional multi-task learning (MTL), and show that DAT is
consistently better than MTL for accented model adaptation.

2. RELATED WORK

Unsupervised training or adaptation for ASR has been studied
for many years. For small amounts of data, such as in speaker
adaptation, Maximum Likelihood Linear Regression (MLLR)
[11] can be used. Unsupervised training strategies were in-
troduced for leveraging large unlabeled corpora using auto-



matic transcription [12, 13, 14]. Later, it was shown that im-
proved results could be obtained using confidence-annotated
lattices [15]. Other work has looked at the impact of transcrip-
tion errors and importance sampling using automatic tran-
scription of speech to train deep neural network acoustic mod-
els [16]. In our work, we use the simple 1-best automatically
generated transcription, since the focus here is on the interac-
tion with domain adversarial training.

Large scale DL domain adaptation via teacher-student
(T/S) learning is proposed to tackle robust speech speech
recognition in [17]. In the T/S framework, the source domain
data (clean data) comes with human transcription, while the
target domain (noisy data) is simulated by adding various
noises to the clean data. The clean data are first used to train
the teacher model. The student model is then trained on the
simulated noisy data using the senone posterior probabilities
computed by the teacher as soft labels. As it is difficult to
generate simulated accented speech, it is difficult to apply this
method to the accented speech recognition problem. Another
supervised T/S learning domain adaptation approach is pro-
posed by [18]. In their work, they combine the knowledge
distillation with the T/S model. A temperature T is used to
control the class similarity of the teacher model during the
process of training.

Domain adversarial training (DAT) [19, 4] is also a popu-
lar method for DL domain adaptation. Because of its easy im-
plementation and great performance, DAT is commonly used
in many computer vision tasks [5, 20]. Recently, this method
has been applied to noise-robust speech recognition. In [7],
a noise-robust acoustic model is trained using both clean and
noisy speech, both with speech transcriptions. At the same
time, in order to learn domain-invariant features, an adversar-
ial multi-task is used to predict which domain this frame is
from (clean vs. a specific noise type). Different from [7], [9]
applied adversarial training to improve noise robustness in an
unsupervised way.

3. DOMAIN ADVERSARIAL TRAINING FOR
ACCENTED SPEECH RECOGNITION

Accented speech recognition has long been of high interest
in industry due to the high recognition error rates. It is diffi-
cult to generate simulated accented speech and it is expensive
and time-consuming to get plenty of labeled accented speech
for training. However, it is relatively easy to collect large
amounts of accented speech without transcription. Without
loss of generality, we denote the transcribed standard accent
speech data set as S = {a:i,yl-}gl, where x; and y; are
speech and the corresponding HMM senone labels. We also
have an accented speech data set T' = {x; } Li'l without tran-
scription. Our goal is to minimize the mismatch between S
and T using DAT.

3.1. Domain invariant features

In our DAT implementation, we pick a layer in the TDNN
to represent the domain-invariant feature space. The goal
is to learn a feature mapping, F'(x) to map the input x to
a domain-invariant space V. V yields a distribution Py and
P(F(z,z € S)) = P(F(z,z € T)) = Py. Inspace V,
the mismatch between source domain and target domain is
reduced, which improves recognition performance on the tar-
get domain even when transcribed target data is not available.
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Fig. 1. Domain adversarial training (DAT)
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A typical DAT network is shown in Figure 1. It con-
sists of three components: the feature generation network
G(z; 0y) with input speech « and parameters 6 ;; the domain
classification network G4(f; 64) with input f and parameters
04, which discriminates the source and target domains during
the process of training; and the senone classification network
Gy(f;0,) with input f and parameters 6,. f is the feature
generated by G y(x; 65) and the goal is to make it invariant to
accents.

3.2. DAT via back propagation

Assuming there are N frames in a minibatch, the objective
function is:

E(0,0y.0a) =

1 < . L (D
N > (Ta(i)LL(0,0y) — Muaa(i) L0, 0a))
=1

For DAT, A is a positive hyper parameter. L; (0¢,0,) is the
lattice free MMI loss functions for senone classification net-
work defined in [10]. L7(0¢,0y) is a cross-entropy loss func-
tion for the domain classification network, where the target
label is binary (accented or not). I,,4(%) is a voice activity de-
tection (VAD) indicator for training example &;: I,qq(i) = 1



if x; is speech, otherwise, I,,,4(7) = 0. We use the VAD indi-
cator in the loss function, since predicting domain labels for
silence segments is nonsense. I;(¢) is a binary indicator for
training example x;, to indicate if this frame is from a tran-
scribed utterance or not. Whenever transcription is available
(human or ASR transcription), it is 1; otherwise it is 0.

The senone classification network G, (f; 6, ) is optimized
by minimizing the senone classification loss, the first item in
Equation (1), with respect to 0,

6, = argmin E(0¢,0,,04)

Y

The domain classification network G4(f; 04) is optimized by
minimizing the domain classification loss with respect to 6.
Obviously, this can be achieved by:

04 = argmax E(0¢,0,,04)

04

For the feature generation network G(x;6;), because we
want to learn domain invariant feature, the feature generated
by Gs(x; 05) should make the well-trained G4(f; 04) fail to
distinguish which domain it comes from, and at the same time
keep discriminative enough for senone classification. This
can be achieved by minimizing the senone classification loss
and maximizing the domain classification loss jointly with re-
spect to 0. The “min-max” optimization distinguish DAT
from MTL. When A > 0, 6 can be optimized by :

0 = argmin E(6¢,6,,04q)
05

That is, while back propagating the error signal from G4(f; 64)
to Gy(x;0;), the bottom layer of the domain classification
network acts as a gradient reversal layer (GRL), multiply-
ing the error signal from the domain classification network
by —A. On the other hand, if A < 0, it becomes a regular
multi-task learner. A = 0 implies a normal TDNN model.

To sum up the model parameters are updated as follows
via SGD:
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where « is the learning rate. By adjusting A\, we can experi-
ment with MTL (A < 0), DAT (A > 0), or the regular TDNN
training (A = 0).

4. EXPERIMENTS

4.1. Data

We have about 360 hours of standard accent training data with
transcriptions. These data are voice-search messages from
various users. Because they are live logs from various devices
and scenarios, they have already covered some background
noises and channel variations. Though it likely covers some
accented data, most data are relatively standard Mandarin and
we name this data set as STD, the source domain set S as
introduced in section 3. The acoustic model trained by the
STD set is relatively robust to channel and noise variations
but not to accents. Additionally we have a development set
(dev) and a test set (test) for standard Mandarin speech, each
with 2000 sentences.

We purchased 100 hours of Mandarin speech per accent
from 6 different provinces in China. These accents are: Hu-
Nan (HN), SiChuan (SC), GuangDong (GD), JiangXi (JX),
JiangSu (JS) and Fulian(FJ). These data come with human
transcriptions. However, we will use this data set as the tar-
get domain data set 7', as though the transcriptions were not
available. For each accent, there are separate dev and test sets,
each with 2000 sentences.

In reporting our character error rates, we use the dev set
to find the optimal language weight, and then apply the best
language weight to the test set.

4.2. Invariant feature extraction across all accents

Our baseline TDNN acoustic model (Row 1 in Table 1) is
trained using 360 hours of STD data without domain adver-
sarial training. This STD baseline consists of 7 layers and
each layer has 625 hidden units with ReLU activation func-
tions and 5998 softmax output units. We use 23-dimensional
filterbanks with 3 pitch features as our acoustic feature vec-
tor. Three consecutive frames are concatenated as the input to
the TDNN. The acoustic model is trained by Kaldi [21] using
the criteria proposed by [10], with a subsampling rate of 3,
both at training and decoding time. All experiments share the
same network configuration as STD. The second row of Ta-
ble 1 shows the results when the human transcriptions of all 6
accented corpora are used in training, showing that there is a
large performance degradation due to accent mismatch.

Next assuming the transcription of the accented speech is
not available, we explore how much performance can be im-
proved using only the knowledge of the accent class in DAT,
via the domain classifier G4(f;04) . In this experiment, we
use all STD data and all 600 hours of accented data with-
out transcriptions to train the model. There are two hidden
layers in the domain classifier network, where each layer has
625 ReLU units. The input of the domain classifier is the
activation of the second hidden layer of the baseline STD net-
work. With the domain classifier, we tried a few \’s and the
best result is from A = 0.03 shown in the third row of Table



Table 1. Character error rates (CER) of various trainings. The baseline STD system is trained on 360 hours of standard
Mandarin (STD). There are 100 hours of training data from each accent. With no transcription available on the accented data,

we show DAT is effective in learning features invariant to domain differences.

training data A dev fest
STD | H IS JX SC GD | HN | Avg. | STD | H IS JX SC GD | HN | Avg.
STD 15.70 | 20.25 | 16.88 | 18.25 | 20.72 | 19.75 | 23.34 | 19.86 | 15.55 | 23.58 | 15.75 | 14.08 | 15.62 | 1532 | 19.34 | 17.28
STD + (600hrs with trans) | - | 14.82 | 10.80 | 10.51 | 11.02 | 11.14 | 13.18 | 15.35 | 12.00 | 14.22 | 14.84 | 9.41 | 8.68 | 9.13 | 9.62 | 11.89 | 10.60
STD + (600hrs no trans) | 0.03 | 15.79 | 19.69 | 16.01 | 17.47 | 20.06 | 19.48 | 21.88 | 19.10 | 1537 | 22.96 | 14.48 | 13.79 | 15.35 | 14.86 | 18.24 | 16.61

Table 2. Results of accent-specific models for accents SC, HN and FJ. All trainings use both STD training data with transcrip-
tion, and the specific accented training data with or without transcriptions. The row of no transcription with A = 0 is the STD

baseline system in Table 1.

SC accent-specific model HN accent-specific model FJ accent-specific model
Accented Data A dev test dev test dev test
STD SC STD SC STD | HN | STD | HN | STD FJ STD FJ
-0.03 | 15.62 | 20.68 | 15.30 | 15.45 | 15.44 | 23.22 | 15.24 | 18.99 | 15.69 | 19.84 | 15.20 | 23.73
no trans 0 1570 | 20.72 | 1555 | 15.62 | 1570 | 23.34 | 15.55 | 19.34 | 15.70 | 20.25 | 15.55 | 23.58
0.03 | 1544 | 19.41 | 1536 | 14.72 | 1570 | 21.82 | 15.16 | 17.90 | 15.53 | 19.09 | 15.29 | 22.86
-0.03 | 15.85 | 16.05 | 14.74 | 12.15 | 15.50 | 19.30 | 15.25 | 16.19 | 15.40 | 15.17 | 15.35 | 19.68
ASR trans 0 15.63 | 15.77 | 1538 | 12.05 | 15.59 | 19.82 | 15.13 | 15.81 | 1532 | 15.19 | 15.13 | 19.27
0.03 | 1534 | 15.62 | 1537 | 11.88 | 1552 | 19.19 | 15.23 | 15.62 | 15.66 | 15.17 | 15.45 | 18.92
-0.03 | 15.05 | 12.83 | 15.08 | 10.45 | 15.33 | 16.99 | 15.22 | 13.58 | 15.26 | 11.72 | 15.32 | 16.54
human trans 0 15.32 | 12.79 | 15.37 | 10.29 | 15.26 | 16.60 | 14.84 | 13.52 | 15.11 | 11.61 | 14.98 | 16.54
0.03 | 1550 | 12.68 | 14.87 | 10.38 | 15.26 | 16.21 | 14.89 | 13.80 | 15.17 | 11.53 | 15.04 | 16.04

1, indicating the effectiveness of adversarial learning without
compromising recognition on STD speech.

4.3. Accent-specific adversarial training

In the previous section, we investigate feature invariance
across all accents. It shows that DAT can help with all types
of accents even without human transcriptions on the accented
training data. The average error reduction across the different
accents is 3.8%.

We are also interested in accent-specific adaptation, where
the STD model is adapted per accent. Compared with multi-
ple accents, the single accent variance is smaller and thus we
expect to get better results. Three accented data sets, FJ, SC
and HN, are selected to do accent-specific experiments, based
on the highest baseline CER on the dev set. We investigate
three cases: 1) no transcriptions of accented data are avail-
able, 2) approximate transcriptions of the accented training
sets are obtained by decoding them using the baseline STD
acoustic model, and 3) human transcriptions of the accented
training data are available. To compare DAT with MTL, we
also run experiments with A < 0.

From Table 2 we can see that DAT (A = 0.03) is always
helpful in dev and test sets in the first two cases, when the cor-
rect transcription is not available. The performance of multi-
task learning is inconsistent, where sometimes it helps a little
but more often it hurts the accuracy. This is because multi-
task optimization is learning domain-discriminative features,
which can be at odds with the senone classification task. In

contrast, DAT can learn more accent-invariant features, es-
pecially when we cannot access the true labels of the target
domain data. When no transcription on the accented data is
available, DAT gave 5.8%, 7.4%, and 3.1% relative CER re-
duction in SC, HN and FJ accent respectively, compared with
the STD model.

When unsupervised or supervised transcription becomes
available, the DAT contribution shrinks. With more detailed
knowledge about the target data, the unsupervised DAT be-
comes less important.

5. CONCLUSION

In this paper, we integrated unsupervised domain adversarial
training (DAT) into TDNN acoustic model training to tackle
the accented speech recognition problem. We compared DAT
with multi-task learning in different setups and observed that
DAT was more effective in all scenarios. Compared with the
model trained on standard accent data exclusively, DAT with
a binary domain label provided up to 7.4% relative CER re-
duction. Combining DAT with unsupervised adaptation via
automatic transcription of the accent data gives overall CER
reduction of 20%.

The concept of DAT is not limited to adapting to accented
speech only. As noted earlier, it has been successfully applied
in other scenarios such as learning channel-invariant features
for robustness in different recording conditions. In the fu-
ture, we will explore the possibility of applying it to far-field
speech recognition.
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