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a b s t r a c t 

This paper addresses the robust speech recognition problem as a domain adaptation task. Specifically, 

we introduce an unsupervised deep domain adaptation (DDA) approach to acoustic modeling in order to 

eliminate the training–testing mismatch that is common in real-world use of speech recognition. Under a 

multi-task learning framework, the approach jointly learns two discriminative classifiers using one deep 

neural network (DNN). As the main task, a label predictor predicts phoneme labels and is used during 

training and at test time. As the second task, a domain classifier discriminates between the source and 

the target domains during training. The network is optimized by minimizing the loss of the label classifier 

and to maximize the loss of the domain classifier at the same time. The proposed approach is easy to 

implement by modifying a common feed-forward network. Moreover, this unsupervised approach only 

needs labeled training data from the source domain and some unlabeled raw data of the new domain. 

Speech recognition experiments on noise/channel distortion and domain shift confirm the effectiveness of 

the proposed approach. For instance, on the Aurora-4 corpus, compared with the acoustic model trained 

only using clean data, the DDA approach achieves relative 37.8% word error rate (WER) reduction. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The increasing availability of multimedia big data, including

arious genres of speech, is fostering a new wave of multimedia

nalytics that aim to effectively access the content and pull mean-

ng from the data. Automatic speech recognition (ASR), which

ranscribes speech into text, serves as a necessary preprocessing

tep for multimedia analytics. With the help of big data, su-

ercomputing infrastructure and deep learning [1] , the speech

ecognition accuracy has been dramatically lifted during the past

ears [2] . Besides the Gaussian mixture model–hidden Markov

odel (GMM–HMM) architecture that dominates the acoustic

odeling in speech recognition for many years, artificial neural

etworks have been historically used as an alternative model

ut with limited success [3] . Only recently, neural network has

e-emerged as an effective tool for acoustic modeling because of

he power of big data and effective learning method [4,51] . The

NN–HMM architecture has come to the central stage in speech

ecognition [2,5] , replacing the GMM–HMM architecture. We have

itnessed the success of various types of (deep) neural networks
∗ Corresponding author. 
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DNNs) not only in speech recognition, but also in visual data

rocessing, data mining and other areas [6–10] . 

Speech is a typical big data: not just in volume, but also noisy

nd heterogeneous. In practice, we desire a robust speech recog-

izer that is able to handle noisy data. For many machine learning

asks, including ASR, we usually assume that the training data and

he testing data have the same probability distributions. However,

eal-world applications often fail to meet this hypothesis [5,11] . In

peech recognition, both the GMM–HMM and DNN–HMM systems

re Bayesian classifiers by nature. Theoretical investigation has

hown that the training–testing mismatch notoriously leads to

ncrease of errors in Bayesian classification [11] . There are many

easons that lead to the mismatch such as environmental noises,

hannel distortions [12] and room reverberations [ 13 , [14] . To

mprove the environmental robustness of a speech recognizer,

 common and efficient approach is multi-condition training

15] that uses the contaminated noisy data, together with the

lean data, in the acoustic modeling training. But it is impossible

o cover all kinds of real-world conditions and the mismatch still

xists. Therefore, environment robustness is still a big challenge

emain unsolved. On the other hand, real-world speech data is

eterogeneous. Speech in different domains, e.g., broadcast news,

ectures, meeting recordings and conversations, has different char-
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acteristics. This causes another mismatch that apparently decrease

the speech recognition performance [14] . 

In order to eliminate the training–testing mismatch, a large

number of robust speech recognition methods have been pro-

posed, which in general fall into two categories: feature-space

approaches and model-space approaches [16,17] . Most approaches

need some prior knowledge about the mismatch. For example,

noise characteristics have to be known beforehand or clean-noisy

speech pairs 1 are needed [18] . Model adaptation is a typical

model-space approach that is quite useful in noise robustness. The

acoustic model, e.g., GMM-HMMs, is adapted using the new data

either in a supervised manner [19] or an unsupervised manner

[20] . For feature-space approaches, it is common to combine

information about speaker, environment and noise, such as using

i -vector [21] , to acoustic features. 

In this paper, we regard the robust speech recognition problem

as a domain adaptation (DA) task [22] . Learning a discriminative

classifier in the presence of the mismatch between training and

testing distributions is known as domain adaptation . The essence

of the domain adaptation and robust speech recognition is iden-

tical, that is, to eliminate the mismatch between the training

data and the test data. We find that the speech features yield to

different distributions if they come from different domains (such

as clean and noisy speech conditions [16] , and data sets with

different genres). Specifically, if we train a DNN acoustic model

using clean speech, we discovered that the feature distributions

of clean and noisy speech yielded from this acoustic model are

significantly different. Hence we would like to embed the domain

information during the acoustic model training in order to obtain

a “domain-invariant feature extractor”. 

Our work is inspired by a recent DNN based unsupervised

domain adaptation approach for image classification [23] . This

deep domain adaptation (DDA) approach combines domain adap-

tation and deep feature learning within a single training process.

Specifically, under a multi-task learning framework [52] , the ap-

proach jointly learns one feature extractor and two discriminative

classifiers using one single DNN: the feature extractor is trained to

extract domain-invariant and classification-discriminative features;

the label predictor predicts class labels and is used both during

training and testing; a domain predictor discriminates between

the source and the target domains during training. In order to

obtain domain-invariant and classification-discriminative features,

the feature extractor sub-network is optimized by minimizing the

loss of the label predictor and maximizing the loss of the domain

predictor at the same time, which is achieved by a special objec-

tive function we defined later. The parameters of two predictor

sub-networks are optimized in order to minimize their losses on

the training set. Compared with other unsupervised adaptation ap-

proaches, the DDA approach is easy to implement by simply aug-

menting a common feed-forward network with few standard layers

and a simple new gradient reversal layer. Moreover, this approach

only needs the labeled training data from the source domain

and some unlabeled raw data of the new domain. Experiments

show that the DDA approach outperforms previous state-of-the-art

image classification approaches on several popular datasets [23] . 

In this study, we introduce the DDA approach to robust speech

recognition. Applying DDA to speech recognition is not trivial.

This is because speech recognition is a more challenging task as

compared with image classification. We elaborate some of the

major challenges as follows. 

• The large number of labels : In the typical image classification

task in [23] , the number of classes are only dozens. In contrast,

in speech recognition, the class labels are thousands of senones
1 Noisy speech may be generated manually by adding noises into clean speech. 

u  

c  

i

(i.e., phoneme states). The effectiveness of DDA on a large scale

classification task like speech recognition desires an intensive

study. 

• Decoding : As compared with image classification, speech recog-

nition is a rather complicated task with frame-level classifica-

tion (classify each speech frame into senone labels) and de-

coding (Viterbi search from a large graph based on the clas-

sified frame labels). The accuracy gain in frame-level classifica-

tion may not ensure consistent accuracy gain at the word level

[24] . 

• Deeper networks : The neural networks in speech recognition

usually have many hidden layers in order to learn highly non-

linear and discriminative features which are robust to irrelevant

variabilities. 

To bridge the gap, in this paper, we study how to integrate

DA into acoustic modeling and present a systematic analysis of

he performance of DDA in robust speech recognition. Our study

hows that the DDA approach can significantly boost the speech

ecognition performance in both noisy/channel distortion and

omain-shift conditions. 

The rest of this paper is structured as follows. Section 2 sur-

eys the related work. Section 3 presents the framework of deep

omain adaptation and studies how to use it in the speech recog-

ition task. Experimental settings and results are discussed in

ections 4 –6 and finally conclusions are drawn in Section 7 . 

. Related work 

As we just mentioned, robust speech recognition methods

an be classified into two categories: feature-space approaches

nd model-space approaches [16,17] . Compared with model-space

pproaches, feature-space approaches do not need to modify or

etrain the acoustic model. Instead, various operations can be

erformed in the acoustic features to improve the noise (or other

istortions) robustness of the features. As for the model-space ap-

roaches, rather than focusing on the modification of features, the

coustic model parameters are adjusted to match the testing data. 

.1. Traditional methods 

In the feature space, feature normalization is the most straight-

orward strategy to eliminate the training–testing mismatch.

opular strategies include cepstral mean subtraction (CMS) [25] ,

epstral mean variance normalization (CMVN) [26] and histogram

qualization (HEQ) [27] . Obviously, speech enhancement methods

28,29] can be adopted to remove the noise before speech recog-

ition. But the unavoidable distortions in the enhanced speech

ay cause another new mismatch problem. 

Rather than updating the features, the acoustic model parame-

ers can be compensated to match the testing conditions. A simple

xample of updating the models is to re-train them with the new

ata; or more popular, adding a variety of noise samples to clean

raining data, known as multi-style or multi-condition training

15,17] . However, due to the unpredictable nature of real-world

oise, it is impossible to account for all noise conditions that

ay be encountered. Thus adaptive and predictive methods are

roposed in the model-space. The adaptive methods update the

odel parameters when sufficient corrupted speech data are avail-

ble. Popular methods include maximum a posteriori re-estimation

MAP) [30] and maximum likelihood linear regression (MLLR) [31] .

n the predictive methods, a noise model is combined with the

lean speech models to provide a corrupted speech acoustic model

sing some model of the acoustic environment. Parallel model

ombination (PMC) [32] and vector Taylor series (VTS) [33] fall

nto this category. 
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.2. DNN based methods 

Compared with GMMs, DNNs have an outstanding non-linear

earning ability, which makes DNN a more robust acoustic model.

ence the DNN–HMM architecture is inherently noise robust to

ome extent as compared with GMM–HMM [17] . However, it is

ot enough to solve the mismatch problem merely relying on the

on-linear learning ability. Recently, many methods in the feature

nd model spaces have been proposed to make DNN–HMM more

obust to the mismatched test data. In order to account for the

ismatch, many useful auxiliary features, reflecting environmental

oise and speaker information [17,18] , are combined with acoustic

eatures as the DNN input. Neural networks can be used as a

peech enhancement tool. In [34,35] , a denoising autoencoder

DAE) is adopted to reconstruct clean speech features from noisy

nes. This kind of method needs stereo data, i.e., clean speech and

orresponding noisy speech, to train the denoising DNN. DNN fea-

ure enhancement and DNN acoustic model can be trained jointly

36,37] . Multi-task training is another popular strategy to improve

he robustness of the acoustic model [38] . By adding one or more

uxiliary output layers in the DNN and optimizing several tasks

e.g., main task: prediction of senone labels, side task: denoising)

t the same time, the network gains more robustness [38] . 

. Deep domain adaptation for robust ASR 

.1. The model 

We treat the training–testing mismatch problem as a domain

daptation task, bridging the target (testing) and the source (train-

ng) domains. The main purpose of deep domain adaptation (DDA)

23] is to embed the domain information into the process of learn-

ng representation, so that the final classification decisions are

ade based on features that are both discriminative and invariant

o the changes of domains. This means the representation learned

y the DNN classifier has the same or very similar distributions in

he source and the target domains. 

Assume that the neural network model works with input

amples x ∈ X and certain labels y ∈ Y where X and Y are input

pace and output space, respectively. Here in speech recognition,

 and y are framewise acoustic features and senones (phoneme

tates), respectively. There are two distributions S ( x, y ) and T ( x,

 ) on X � Y , which are referred to as the source distribution (for

raining) and the target distribution (for testing) and both the

wo distributions are assumed complicated and unknown. Due to

omain shift, S and T are similar but different. 

In the training–testing mismatch scenario, we train the model

ith S ( x, y ), but we test the model with the data yields to distri-

ution T ( x, y ). However, we can access to many training samples

 x 1 , x 2 , . . . , x N } from source domain and target domain according

o the marginal distributions S ( x ) and T ( x ). Denote with d i ([0, 1]

r [1, 0]) the ( domain label ) for the i th sample, which indicates

hether x i comes from the source domain ( x i ∼ S ( x ) if d i = [1 , 0] )

r from the target domain ( x i ∼ T ( x ) if d i = [0 , 1] ). 

The unsupervised deep domain adaptation architecture [23] is

epicted in Fig. 1 . The architecture is simply based on a feed-

orward neural network. But different from a common one, this

etwork has two output layers, which are the main class label y ∈
 and the domain label d ∈ {[0, 1], [1, 0]}. Specifically, this model is

ecomposed into three parts to perform different mappings: a fea-

ure extractor G f , a label predictor G y and a domain predictor G d . 

More formally, the mapping functions are: 

 = G f (x ;� f ) ; (1) 

 = G y (f ;�y ) ; (2) 
 = G d (f ;�d ) ; (3) 

here �f , �y , �d are the parameters of the network (in Fig. 1 )

nd f is a D -dimension feature vector. 

Our aim is to jointly train G f , G y and G d . Specifically, we want

o seek �f to minimize the label prediction loss and to maximize

he domain classification loss at the same time. The maximization

f the domain classification loss is actually to make the two

eature domain distributions as similar as possible. Meanwhile, in

rder to assure the domain classification, the �d has to make the

apping G d perform well in domain classification. This leads to

he loss function of this network: 

(� f , �y , �d ) = 

∑ 

i =1 , ... N 
d i =[1 , 0] 

L y (G y (G f (x i ;� f ) ;�y ) , y i ) 

−λ
∑ 

i =1 , ... N 

L d (G d (G f (x i ;� f ) ;�d ) , d i ) 

= 

∑ 

i =1 , ... N 
d i =[1 , 0] 

L i y (� f , �y ) − λ
∑ 

i =1 , ... N 

L i d (� f , �d ) (4) 

here L y (., .) and L d (., .) are loss functions for label and domain

redictors respectively, while L i y (., . ) and L i 
d 
(., . ) denote the loss

f the i th training sample. Loss functions can be cross entropy

r mean square error function depends on the tasks. λ is a

ositive hyper parameter used to trade off two losses in practice.

rankly, the similar loss functions are common used in many other

achine learning task [39–41] . 

.2. Optimization 

According to the loss function derived from Section 3.1 , we can

ptimize the DDA network using an approach similar to stochastic

radient decent (SGD) [42] . The aim of the optimization is to seek

he optimized parameters that: 

( ̂  � f , ˆ �y ) = arg min 

� f , �y 

E(� f , �d , �y ) , (5) 

ˆ 
d = arg max 

�d 

E(� f , �d , �y ) . (6) 

Although �d is optimized by maximizing Eq. (4) , it equals to

inimize the second item of Eq. (4) . So �d will make sure the

erformance of domain predictor. �f is optimized by minimizing

he first item and maximizing the second item (because of the mi-

us symbol). This training strategy will keep the feature extracted

rom the neural network domain-invariant and classification-

iscriminative. Under the multi-task learning framework, the fol-

owing equations are used to update the parameters: 

f ← � f − μ

(
∂ L i y 
∂ � f 

− λ
∂ L i 

d 

� f 

)
(7) 

d ← �d − μ
∂ L i 

d 

∂ �d 

(8) 

y ← �y − μ
∂ L i y 
∂ �y 

(9) 

here μ is step size. 

.3. Applying DDA to speech recognition 

State-of-the-art ASR systems are Bayesian classifiers by nature.

 typical speech recognition system can be formulated as a simple

quation: 

ˆ 
 = arg max 

W ∈L 
P (X | W ) P (W ) (10) 
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Fig. 1. Unsupervised deep domain adaptation architecture. 
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where W = { w 1 , w 2 , . . . } is a possible word sequence in language

L , X = { x 1 , x 2 , . . . } is the observation sequence with frame-level

acoustic feature x , P ( X | W ) is the acoustic model and P ( W ) is the

language model. Therefore speech recognition (or decoding) is to

find out the optimal word sequence ˆ W that maximizes the joint

acoustic and language probabilities. 

As for the language model, word level N -gram model [43] ,

trained from a large set of textual data, is usually used. The acous-

tic model is often built at fine-grained phoneme (subword) level,

trained from labeled speech data with transcripts. The distribution

of speech data is complex and the speech production is apparently

a dynamic process. Traditionally, hidden Markov models (HMMs)

are used to model this dynamic process in a phoneme through

state transitions, while Gaussian mixture models (GMMs) are used

to depict the distribution of speech data at HMM state level (sub-

phoneme or so-called senone). This is the so-called GMM–HMM

architecture. In practice, context-dependent models, e.g., triphones,

are used to model the important coarticulation phenomenon in

speech production. Recently, neural networks have re-emerged as

a powerful acoustic modeling tool with superior performance [2,5] ,

replacing GMMs to depict the distribution of speech data, namely

the DNN–HMM architecture. Either GMM–HMM or DNN–GMM, if

the distributions of the training data and the test data have some

differences, the error of the Bayesian classifier will be increased

[11] . Hence in this study, we use the unsupervised deep domain

adaptation (DDA) strategy to adjust the acoustic model during the

training time. Our purpose is to let the DNN acoustic model learn

similar distributions both in the training data and the test data,

which may increase the robustness of the Bayesian classifier. 

Fig. 2 shows how to use the DDA strategy in speech recognition.

A speech recognition system is composed of an acoustic model

training stage 2 and a testing stage. In the acoustic model training

stage, the first step is to extract acoustic features (represented by
2 A language model is also needed, but its training is out of the scope of this 

paper. 

a  

t  

v  

d  
nput vector x in Fig. 2 ), such as MFCC or FBank, for the training

peech samples. Then the acoustic feature sequences are used to

rain triphone GMM–HMM acoustic models (so-called senones).

he GMM–HMM models are just used to perform forced alignment

o the training samples, obtaining the labeled training samples

speech frame and its corresponding senone label). Within the

airwise frame-label data, a DNN acoustic model is thus learned

hat classifies the input frame-level acoustic vector into senone

abel. In this process, we can use the DDA approach to learn

he senone label classifier and the domain classifier at the same

ime using the labeled training data and some of the unlabeled

aw data from the testing domain. At the test stage, the domain

redictor is discarded and we only use the senone predictor as the

coustic model. 

Given the predicted senone label scores, a speech recognizer

till needs a decoder to obtain the best word sequence. As we men-

ioned in the beginning of this section, decoding involves not only

n acoustic model, but also a language model. The acoustic score

nd the language score are combined in the decoding process for

he decision of the final word sequence. Here we use the weighted

nite-state transducers (WFST) [24] based static decoder to do the

ombination. In order to compose the decoding WFST, apart from

he acoustic model and the language model, a lexicon and the

ontext are also needed [24,44] . Using the compose operation in

FST, the different level representations are integrated in just one

FST graph, which maps the HMM states to words. For efficiency

easons, token passing [45] and beam search algorithms are often

pplied in the decoding process. 

. Experiments for noise/channel robustness 

We evaluate the noise robustness of DDA on Aurora-4 [15] ,

 popular corpus for robust ASR research. Aurora-4 is designed

o verify the effectiveness of robust ASR methods on a medium

ocabulary continuous speech recognition task. There are two

ifferent training conditions: (1) clean training condition, which
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t  

m  

s  

(  

d  
ncludes 7138 utterances recorded with the primary microphone

ithout any added noise or distortions; and (2) multi-condition

raining condition, including the same 7138 utterances, but with

ne half of the data was recorded by the primary microphone

nd the other half recorded using the second microphone; all are

ontaminated with six types of added noises at 10–20 dB SNR. In

rder to investigate different noise/channel distortion conditions,

he Aurora-4 test set is composed of four subsets. 

• Subset A (Clean): 330 clean utterances without any noises or

distortions, recorded with the primary microphone; 

• Subset B (Noise): 330 × 6 utterances, by corrupting Subset A

with six different noises; 

• Subset C (Channel distortion): 330 utterances, same as Sub-

set A, but recorded with the second microphone, without any

added noises. 

• Subset D (Noise + Channel distortion): 330 × 6 utterances, by

corrupting Subset C with six different noises 

All the speech files are sampled at 16KHz, quantified by 16 bits.

.1. Clean condition training with multi-condition testing 

This experiment is designed to evaluate the robustness of the

DA approach in mismatched training–testing condition: acoustic

odel is trained using clean speech while tested in multiple

onditions with contaminated speech. Specifically, we use the

lean-condition training set of Aurora-4, which includes 7138

tterances, to train a triphone GMM–HMM acoustic model. The

coustic feature is 39-dim MFCC. Then the GMM–HMM acoustic

odel is used to align the training data to obtain the triphone

tate (senones) labels. 

After that, two different DNN–HMM acoustic models are

rained: the conventional DNN–HMM model trained with a stan-

ard feed-forward network and the new DNN–HMM model trained

sing the DDA approach in Fig. 1 . For clarity, they are named as

lean-DNN–HMM and DDA–DNN–HMM, respectively. The Clean-

NN–HMM model is trained using all the 7138 clean-condition

raining utterances, as a baseline model. The training data of DDA–

NN–HMM consists of two parts: 7138 clean-condition utterances

ith senone labels and 30 0 0 multi-condition utterances without

enone labels. The clean-condition utterances are used to train the

hole network ( G f , G y , G d ) while the multi-condition utterances
re used to train the feature extractor and the domain classifier

 G f , G d ). Because the data from the target domain does not have

enone labels, we randomly generate senone labels for the target

omain data in order to train the model in a uniform framework.

pecifically, we use a binary flag to control if the errors of the

urrent frame is used to optimize the feature extractor and the

enone labels predictor or not. If the current frame comes from

he target domain, the senone predictor errors are thus discarded.

s for the domain predictor, we also have two domain labels to

redict. Although there are various kinds of noises in our training

ata, we do not distinguish them because we do not want to use

oo much priori knowledge of the data. Hence for simplicity, there

re just two class labels to predict (clean and noise). 

For the two DNN–HMM systems, the input layer is a context

indow of 11 frames of 40-dim FBANK with delta and acceleration

oefficients (40 × 3 × 11). The G f part of the network has 6

idden layers with 1024 units in each layer. We also compare our

pproach with a state-of-the-art approach – DNN-PP [35] . Two

NNs are used in this approach [35] : speech enhancement DNN

nd acoustic model DNN. The first DNN, as a pre-processor for

enoising, trained with clean-noisy speech pairs. All the training

ata, including clean and noisy samples, go through the first DNN

nd then used for DNN acoustic model (the second DNN) training.

part from these experiments, we also experiment with the semi-

upervised method for comparison. For the target domain data, we

o not have senone labels. Hence we first decode the unlabeled

arget data using the Clean-DNN–HMM model and get the senone

abels. Please note that the resultant senone labels do have in-

vitable errors. The adapted model, namely Semi-Ada-DNN–HMM,

s then obtained by fine-tuning the Clean-DNN–HMM acoustic

odel using these labels. The Semi-Ada-DNN–HMM model is used

o test the target domain test data. 

Table 1 shows the experimental results. From the results, we

otice that the Clean-DNN–HMM model, which is trained using

lean data, performs badly under noisy and channel mismatch

onditions. The word error rate sharply increases from 3.36% to

0.73% when the system encounters both noise and channel dis-

ortions. Meanwhile, we clearly observe that the DDA–DNN–HMM

odel consistently reduces the word error rates for all testing sub-

ets. Especially for the most challenging condition, i.e., Subset D

with both noise and channel distortion), the WER is significantly

ropped from 50.73% to 34.55%. In average, DDA–DNN–HMM
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Fig. 3. Relationship between WER and (a) hyper-parameter λ, (b) position of feature representation layer and (c) the amount of adaptation data. For comparison, the blue 

dotted line represents the WER of Clean-DNN–HMM. 

Table 1 

Experimental results for clean condition training with multi-condition test on 

Aurora-4 in terms of WER (Word Error Rate). The hyper-parameter λ = 0 . 45 for 

DDA–DNN–HMM. 

Model A B C D Avg. 

Clean-DNN–HMM 3.36 29.74 21.02 50.73 36.22 

DDA–DNN–HMM 3.24 14.52 17.82 34.55 22.53 

Semi-Ada-DNN–HMM 4.13 17.55 15.67 37.73 25.11 

DNN-PP [35] 5.1 12.0 10.5 29.0 18.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Experimental results for multi-condition training with sur- 

prise noise testing on Aurora-4. 

Model WER (%) 

MultiCon-DNN–HMM 8.22 

DDA–DNN–HMM 7.45 
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3 These three types of noise are from another noise dataset and they are totally 

different with the noises in Aurora-4. 
4 The WSJ corpus contains WSJ0 and WSJ1. 
achieves relative 37.8% WER reduction (from 36.22% to 22.53%).

Our approach is even better than the Semi-Ada-DNN–HMM model.

This is because of the inevitablely wrong senone labels used for

model fine-tuning in the semi-supervised approach. The aver-

age WER of DDA–DNN–HMM is even close to DNN-PP [35] , a

method that needs pairwise clean-noisy data for front-end speech

enhancement. 

4.2. Impact of hyper-parameters 

We also investigate the impacts of hyper-parameters λ, the

position of feature representation layer f and the amount of adap-

tation data. Their impacts are depicted in Fig. 3 . Fig. 3 (a) shows

how λ affects the average WER. When λ = 0 , the DDA–DNN–HMM

model becomes the Clean-DNN–HMM model, in which the do-

main predictor is not working. We can see that WER goes down

with the increase of λ and the lowest WER is achieved when

λ = 0 . 45 . On the contrary, when we set λ a value below zero,

WER increases. This is because the domain difference is enlarged

when λ is set to a negative value, as seen in Eq. (6) . Another

factor which may affect the DDA–DNN–HMM acoustic model is

the position where we put the feature layer f . If we regard the G f 

and G y as an whole network and change the position of feature

representation layer from top (near to softmax layer of G y ) to

down (near to the input of G f ), we find that WER increases as

shown in Fig. 3 (b). Fig. 3 (c) shows the relationship between WER

and the amount of adaptation data. We find that the performance

improves with the increase of adaptation data. But beyond 40 0 0

adaptation utterances, the performance gain becomes very small. 

4.3. Multi-condition training with surprise noise testing 

As we pointed out in Section 2 , multi-condition training is an

effective approach to improve the robustness of an ASR system.

This is achieved by training the acoustic model using contami-

nated speech. Hence the distributions of the training data and
est data become identical or similar. However, in real-world,

ulti-condition training cannot cover all types of contamination

noise or channel distortion). We carry out an experiment to check

f the DDA approach still works when the multi-condition trained

SR system encounters some surprise types of noise. In the ex-

eriment, test data is derived by adding three kinds of new noise

o the clean test data with 5–10 dB SNR 

3 . The multi-condition

NN–HMM, denoted as MultiCon-DNN–HMM, is trained only

sing the multi-condition training data from Aurora-4. The DDA–

NN–HMM is trained using the multi-condition training and 30 0 0

oisy utterances corrupted by the three new noises. The network

s the same with that in Section 4.1 . Results are summarized in

able 2 . We notice that multi-condition training is quite effective

nd the WER of MultiCon-DNN–HMM is significantly decreased

s compared with the Clean-DNN–HMM in Table 2 . But with the

DA approach, the WER is further reduced from 8.22% to 7.45%

nd relative WER reduction of 9.36% is thus achieved. 

. Experiments for domain shift 

As we discussed in Section 1 , real-world speech is heteroge-

eous with different genres. We test the proposed DDA approach

o see if it shows robustness when the speech recognizer is used

n another domain. 

In this experiment, we regard the WSJ [46] and Librispeech

47] corpus as data from different “domains”. The WSJ0 and

SJ1 corpus 4 consist primarily of read speech with texts drawn

rom a machine-readable corpus of Wall Street Journal news

ext. WSJ0 includes a 50 0 0-word text while WSJ1 includes a

0,0 0 0-word text. Each utterance was recorded in two channels:

 high-quality “primary” microphone (a head-mounted, noise-

anceling Sennheiser HMD410), and an additional microphone

desk-mounted Crown or other). The total duration of WSJ0 and

SJ1 are about 80 h. LibriSpeech is a 10 0 0-h corpus derived
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Fig. 4. Comparison of learned feature representations of Clean-DNN–HMM and DDA–DNN–HMM. The top figure is obtained by feeding the clean and corresponding noisy 

speech to the Clean-DNN–HMM acoustic model described in Section 4.1 . The bottom figure is obtained by feeding the same clean and noisy speech to the DDA–DNN–HMM 

acoustic model. We only visualize two dimensions for clarity. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 

Table 3 

Experimental results for domain shift. The DDA–DNN–HMM acoustic model is 

trained using 80 h WSJ labeled data and 30 h LibriSpeech unlabeled data. 

Model WER (%) 

Baseline 31.19 

DDA–DNN–HMM 29.40 
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rom audiobooks that are part of the LibriVox Project. The WSJ

nd LibriSpeech corpus can be used to train large vocabulary

ontinuous speech recognition (LVCSR) acoustic models. 

We first train a GMM–HMM acoustic model according to the

onfiguration in [47] , resulting in 3414 senones. Then, we train a

NN–HMM acoustic model using the 80-h WSJ data as a baseline

ystem. After that, we train a DDA–DNN–HMM acoustic model

sing 80-h WSJ data (with senone labels) and 40-h adaptation

ata from Librispeech (without senone labels) out of 500-h “train-

ther-500” subset. The DNN has the same topology with the one

sed in Section 4 . We use the 5.4-h Librispeech “test-other” set

or testing. Table 3 shows the results on this test set. We can see

hat about 6.9% relative WER reduction is achieved when the DDA

pproach is used. This confirms that the proposed approach shows

obustness to domain shift. 

. Analysis 

As we mentioned in Section 3.1 , our purpose is to learn

omain-invariant feature representations which have the same or

imilar distributions in the source and the target domains. In our

xperiments, we regard the training data as the target domain and

he test data as the target domain. The learned feature represen-

ations, denoted as f in Fig. 1 , can be visualized for analysis. The

imension of this representation is 1024 in our model and we

andomly choose two dimensions to visualize. To this end, we feed

ome clean speech frames and corresponding noisy speech frames

o Clean-DNN–HMM and DDA–DNN–HMM models, respectively,

iscussed in Section 4.1 and the two feature dimensions are plot-

ed in Fig. 4 . From the top figure in Fig. 4 , it is obvious that the
epresentations of clean speech (denoted as red points) and noisy

peech (denoted as green points) obtained by Clean-DNN–HMM

coustic model have very different distributions, which shows the

ismatch between the training and test data. In contrast, this

ifference in distributions clearly becomes smaller for DDA–DNN–

MM, in which the deep domain adaptation approach effectively

arrows the training–testing mismatch. 

. Conclusion 

In this paper, we has addressed the training–testing mismatch

roblem in speech recognition using an unsupervised deep domain

daptation approach. Through a multi-task learning framework, a

eep neural network feature extractor is learned by minimizing

he loss of the phoneme classifier (main task) and to maximize

he loss of the domain classifier (second task) at the same time.

pecifically, during the acoustic model training, the domain classi-

er tries to eliminate the differences of data distribution between

he source and the target domains. This approach significantly

mproves the performance of DNN acoustic model using some

nlabeled data from the new domain. When evaluated in the

clean condition training and multi-condition testing” scenario on

urora-4 corpus, the proposed approach decreases the word error

ate from 36.22% to 22.53%, with 37.8% relative error reduction. In

he domain shift experiment, the approach achieves 6.9% relative

ord error rate reduction. Analysis shows that the performance

ain comes from the elimination of the mismatches between

he distributions of the training and testing data. In the future

ork, we plan to implement the domain adaptation approach in

onvolutional neural network (CNN) [48] and recurrent neural

etworks (RNN) [49] that have shown superior performances in

peech recognition. We also want to investigate the performances

f treating different types of noises as different domains in the

DA framework. We notice that a recent multi-tasking training

MTL) approach has similar idea with our proposed DDA approach.

n [50] , an MTL approach is proposed to simultaneously predict

he class label and the clean speech from the noisy speech input.
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We plan to experimentally compare the DDA approach with this

MTL approach in our future work. 
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