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Abstract
The paper studies the post processing in deep bidirectional Long
Short-Term Memory (DBLSTM) based voice conversion, where
the statistical parameters are optimized to generate speech that
exhibits similar properties to target speech. However, there
always exists residual error between converted speech and target
one. We reformulate the residual error problem as speech
restoration, which aims to recover the target speech samples
from the converted ones. Specifically, we propose a denoising
recurrent neural network (DeRNN) by introducing regularization
during training to shape the distribution of the converted data
in latent space. We compare the proposed approach with global
variance (GV), modulation spectrum (MS) and recurrent neural
network (RNN) based postfilters, which serve a similar purpose.
The subjective test results show that the proposed approach
significantly outperforms these conventional approaches in terms
of quality and similarity.
Index Terms: residual error, Gaussian noise, denoising, recur-
rent neural network, voice conversion

1. Introduction
Voice conversion (VC) [1] is a technique to modify one speaker’s
(source) voice to impersonate another speaker (target) while
keeping its linguistic information unchanged. VC is useful in
many tasks, such as personalized text-to-speech (TTS) synthe-
sis [2], speech enhancement [3], speech-to-speech translation [4]
and so on.

Recently, deep neural network (DNN) and deep bidirectional
long short term memory (DBLSTM) were proposed as effective
non-linear voice conversion models [5, 6, 7], which use several
hidden layers in the conversion architecture to capture speech
characteristics. Especially, the DBLSTM architecture can store
long-range segmental information in its memory blocks and
peephole connections to learn the contextual dependency of
speech [8], which achieves superior performance to other com-
petitive models [9], e.g., Gaussian mixture model (GMM) [10],
dynamic kernel partial least square (DKPLS) [11], nonnegative
matrix factorization (NMF) [12] etc. We note that neural network
based approaches usually result in muffled speech due to over-
smoothness, that is, the converted parameters are the averaging
of the parameters of the trained model.

Post-processing has been a popular way to solve the over-
smoothing issue, such as global variance (GV) [13, 14] and
modulation spectrum (MS) [15, 16] based postfilters. These
postfilters aim to adjust the variance of the converted parameters
to match that of target parameters either in the mel-cepstra
domain or in the modulation spectrum domain to enhance its
dynamic property. However, these approaches are based on
empirical findings of the difference between the converted and

the target parameters. Recently, DNN-based postfilter [17, 18]
has been proposed to learn the difference directly from data
by mapping the converted parameters to the target parame-
ters. Considering the high temporal correlation of speech, it
is more appropriate to use recurrent neural network (RNN)
to handle the time dependency between consecutive speech
frames [19]. Hence RNN-based postfilter [20] has achieved
better performance. Apparently, these postfilters aim to post-
process the converted speech by compensating the residual error,
i.e., compensating the empirical mismatch between the converted
speech and the target speech.

In this paper, different from residual error compensation, we
reformulate the residual error problem as a speech restoration
task. Specifically, we consider the voice conversion process as a
local corrupted process [21] [22], where converted parameters
are considered as corrupted target parameters. We propose to use
a denoising recurrent neural network (namely DeRNN) to restore
the original speech (i.e., the target speech) from the corrupted
speech. Our work is also motivated by recent advances of RNN
in speech enhancement and robust speech recognition, which
serves as a similar purpose [23, 24]. Subjective test results
on DBLSTM-based voice conversion show that the proposed
DeRNN approach significantly outperforms the conventional GV,
MS and RNN postfilters in terms of both quality and similarity.

2. DBLSTM-based voice conversion
As we use DBLSTM as our voice conversion model, in this
section, we first briefly discuss its inherent mismatch between
the converted parameters and the target parameters as well as the
ways to handle the mismatch.

The framework of a typical DBLSTM-based voice conver-
sion approach [7] is illustrated in Fig. 1, which has a training
stage and a conversion stage. At the training stage, we use
WORLD [25] to extract spectral envelope from speech and then
mel-cepstral coefficients (MCCs) [26] are extracted from the
spectral envelope. Next, parallel MCCs of the source and target
speech for training are aligned through dynamic time warping
(DTW). Then, the aligned source and target MCCs are used as
the input and output features to train the DBLSTM model by the
back-propagation through time (BPTT) algorithm. A nonlinear
mapping function is learned from source MCCs X to target
MCCs Y , which can be formulated as:

Ŷ = F (X) (1)

During the conversion process, given the MCCs X , a new
source speech sequence, its corresponding converted MCCs Ŷ
are predicted by the learned DBLSTM mapping function F (·)
frame by frame. Consequently, the WORLD is used as the
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Figure 1: The architecture of a typical DBLSTM-based voice
conversion approach.

vocoder to synthesize the converted speech from the predicted
MCCs Ŷ .

In spite of its superior performance, there always exists an
error between the converted parameters Ŷ and target parameters
Y according to Eq. (1). This error degrades both quality and
similarity of the converted speech. To reduce such error, one
can add extra hidden layers or adopt a tandem approach [27, 28]
to build a tandem DBLSTM architecture as a refining model
to predict the target parameters based on the converted speech.
RNN-based postfilter [20] can be considered as an example of
such refining model. Hence, with learning rate α, the weights
wlm (from unit l to unit m) can be updated in the error back-
propagation process of the refining model as:

wlm = wlm − α
∂E

∂wlm
(2)

E = (Y − Ŷ )T (Y − Ŷ ) (3)

where E is the squared error, Y , Ŷ are the target and predicted
parameters respectively. As Y is quite close to Ŷ ,E is extremely
small and thus may result in vanishing gradient problem that
prevents the weights wlm to converge to global minimum value.

In other words, we can consider Ŷ as Y corrupted by
additive noise, if Ŷ and Y are close to each other. Therefore,
the conversion process can be considered as a local corruption
process where target parameters are corrupted by additive noise.
It can be straightforward to reconstruct the target parameters
from the converted ones.

3. DeRNN for DBLSTM based voice
conversion

We now discuss formulating the residual error problem as speech
restoration and employ a denoising recurrent neural network
approach for speech restoration, which we call DeRNN.
3.1. Residual Error

We define residual error ε(Ŷ ) = [ε(1), · · ·, ε(d), · · ·, ε(D)] by
subtracting target parameters Y = [y(1), · · ·, y(d), · · ·, y(D)]

from the converted ones Ŷ = [ŷ(1), · · ·, ŷ(d), · · ·, ŷ(D)] as:

ε(d) = ŷ(d)− y(d) (4)

where ε(d) is the d-th dimension residual error between the d-th
dimension converted parameters and the d-th dimension target
parameters in latent space. D is the dimensionality.

If ŷ(d) and y(d) are close to each other, the residual error
can be considered as Gaussian noise and formulated with a mean
0 and variance σ2 as:

ε(d) = ŷ(d)− y(d) ∼ N(0, σ2) (5)

From Eq.(5), the converted parameters are reformulated as:

ŷ(d) = y(d) + ε(d), ε(d) ∼ N(0, σ2) (6)
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Figure 2: Diagram of the DeRNN approach for reconstructing
original target parameters from the converted ones.

where y(d) + ε(d) is seen as the original target parameters
corrupted by additive Gaussian noise. The converted parameters
ŷ(d) can be therefore considered as the corrupted target parame-
ters. In this way, we reformulate the residual error problem as
speech restoration such that original target parameters y(d) can
be reconstructed from the corrupted ones ŷ(d).

We can consider the conversion process as the encoding
process of auto-encoder [21]: a local corruption process, defined
as C(Ŷ |X) where X is source parameters and Ŷ , the corrupted
Y is the auxiliary variable in latent space. The decoding process
is to train the conditional distribution pθ(Y |Ŷ ) on the data pairs,
{(ŷ(d), y(d))}Dd=1. We propose the following algorithm to
learn pθ(Y |Ŷ ).

Algorithm: The training algorithm for speech restoration
requires a training set of original target examples Y and
converted examples Ŷ to train a conditional distribution
pθ(Y |Ŷ ).

Repeat
• Original target examples Y
• Corrupted target examples (converted examples) Ŷ ∼
C(Ŷ |X)

• Use (Ŷ ,Y ) as training examples to maximize the
expected value of pθ(Y |Ŷ ), e.g., by stochastic gradient
descent approximation with respect to θ.

until convergence of training

3.2. DeRNN

The denoising recurrent neural network (DeRNN) is used as the
decoding process to train the pθ(Y |Ŷ ) for speech restoration .
The diagram of DeRNN is illustrated in Fig 2, which describes
the training and reconstruction stages.

3.2.1. Training Stage

At the training stage, to shape the distribution of converted
parameters during training, random Gaussian noise is used to
simulate the distribution of residual errors. We add the random
Gaussian noise to the original target parameters (Y ) to simulate
the corrupted target parameters (Ŷ ). A nonlinear mapping
function f(Ŷ ) → Y is learned by DeRNN model from Ŷ
to Y that describes the relationship between corrupted target
parameters and the desired target parameters..

Specifically, the inner structure of DeRNN is shown in Fig. 3,
where the input makes use of contextual information for taking
three frames of the corrupted target parameters.

As an example to illustrate, we show the distributions of the
residual error from training data and its corresponding random
Gaussian noise in Fig. 4, respectively.

3.2.2. Reconstruction Stage

At the reconstruction stage, the converted parameters are directly
fed into the trained DeRNN model to reconstruct its correspond-
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Figure 3: Structure of the DeRNN model. A model with 3 hidden
layers that takes 3 frames of corrupted target parameters and
predicts original target parameters of the center frame.
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Figure 4: Distributions of 11th dimension of the residual error
and random Gaussian noise for the same sentence of training
data in DBLSTM based voice conversion.

ing original target parameters.

3.3. Spectra Feature Selection

DeRNN can be applied to any features. In this paper, we propose
to employ DeRNN in the mel-cepstra domain for reconstructing
original target MCCs from the converted MCCs.

3.3.1. Motivation

In signal processing, mel-cepstrum [26] is used to represent
the short-term power spectrum of a signal based on nonlinear
mel scale of frequency, which is derived as a nonlinear Fourier
transform of the spectrum. Mel cepstral coefficients (MCCs) are
coefficients of the mel-frequency spectrum, which can efficiently
reflect the human auditory system’s response.

3.3.2. Method

The residual errors for the training data are obtained by subtract-
ing the aligned target MCCs from the aligned converted MCCs.
Next, we produce random Gaussian noise with mean zero and
statistical variances of these residual errors and then add it to
the original target MCCs to form corrupted target MCCs. The
corrupted and original target MCCs are used as the input and
output features of the DeRNN respectively.

3.4. DeRNN vs GV, MS, and RNN postfilters

The DeRNN technique is similar to GV, MS, and RNN based
postfilters in the sense that it tries to rectify the converted speech.
However, it is different from them in many ways.

GV-based postfilter [13, 14] is proposed in response to the
observation that the variance of converted parameters is smaller
than that of the target ones. It forces the variance of converted
mel-cepstra closer to that of the target ones by linear mapping.
MS-based postfilter [15, 16] is proposed to enhance the dynamics
of converted parameters in modulation spectrum domain by
forcing the variance of converted modulation spectrum closer

to that of the target ones. These postfilters are both based on
empirical finding where the difference between variances tends
to occur for most speakers. The RNN-based postfilter [20] is
proposed to predict original parameters based on the converted
parameters for residual error compensation. In our proposed
approach, the conversion process is considered as a noisy
channel, through which target parameters are corrupted by
additive Gaussian noise. The DeRNN model is employed for
recovering original target parameters from the converted ones
regardless of specific values of the residual errors.

4. Experiments
4.1. Experimental Setup

In our experiments, we use CMU ARCTIC corpus [29] for
intra-gender and inter-gender conversion. For DBLSTM-based
voice conversion, in pre-training, 450 and 50 parallel sentences
randomly-selected are used as training and validation data. 20
and 5 parallel sentences are used as training and validation data
to re-train. In addition, 10 sentences are used as evaluation
data during re-training. For DeRNN, 450 and 50 sentences
from the pre-training are used as training and validation data, 10
sentences converted from the re-training are used as evaluation
data. Speech signals are sampled of 16kHz and the size of
window is 25ms with 5ms frame shift. We use WORLD [25] to
extract spectral envelope, aperiodic component (AP) and LogF0.
49-dim MCCs (except for energy dimension) extracted from
the spectral envelope are converted by DBLSTM-based voice
conversion system, LogF0 is linearly converted and then we
copy the AP of source speech to synthesize the converted speech.

The DBLSTM-based voice conversion model and DeRNN
model are both trained by toolkit MERLIN [30]. In the former,
there are three hidden layers in the network where each hidden
layer is bidirectional LSTM. In each layer, the number of units
is set as [49, 96, 128, 96, 49] for pre-training and re-training.
While DeRNN has three hidden layers in the network where
each hidden layer is RNN. In order to take advantage of context
information, three frames of corrupted target MCCs are used
as input features. The number of units in each layer is [147,
1024, 2048, 1024, 49] respectively. The DBLSTM and DeRNN
models are both trained by BPTT algorithm and optimized by
stochastic gradient descent approximation with a learning rate
of 0.001 and momentum of 0.5.

We implement five systems for comparison:
• NONE: The typical DBLSTM-based voice conver-

sion [7] without post-processing.
• GV: GV-based postfilter [14] is adopted.
• MS: MS-based postfilter [16] is adopted.
• RNN: RNN-based postfilter [20] is adopted.
• DeRNN: The proposed postfilter, in which DeRNN is

used in the mel-cepstra domain.

4.2. Objective Evaluation

4.2.1. Mel-cepstral distortion (MCD)

Mel-cepstral distortion (MCD) [31] is used as objective measure
of the spectral distance from converted to target speech, which
is denoted as:

MCD[dB] =
10

ln10

√√√√2

D∑
d=1

(Ctargetd − Cconvertedd )2 (7)

where Ctargetd and Cconvertedd are the d-th coefficient of the
target and converted MCCs, respectively. d is the dimension



Table 1: The MCD of the aforementioned five different systems.

Conversion Female-Female Female-Male Male-Female Male-Male

Speaker-pair CLB-SLT CLB-BDL RMS-SLT RMS-BDL

Source-Target 7.230 9.296 9.574 8.695

NONE 5.403 5.748 5.588 5.833

GV 5.688 5.979 5.641 6.013

MS 6.235 6.120 6.110 6.172

RNN 5.183 5.728 5.678 5.875

DeRNN 6.404 6.960 6.714 7.044

1.5

2

2.5

3

3.5

4

NONE GV MS RNN DeRNN

M
O

S 

Figure 5: Mean opinion scores (MOS) test results with 95%
confidence intervals for speech quality.

index and D is the dimensionality of MCCs (except for energy
dimension). We expect a good postfilter to report a low MCD
value.

The MCD scores of the above five systems for intra-gender
and inter-gender voice conversion are summarized in Table 1.
We note that the MCD score of DeRNN is the highest, which
shows that the reconstructed target speech may still contain some
noise. As presented in [32], each original speech (i.e., original
target speech) has a noise masking threshold. If additive noise
imposed on the original speech is below the masking threshold,
it will be inaudible. We hope that the artifacts introduced by
DeRNN are below such a threshold, thus are inaudible. This will
be confirmed in the subjective listening tests. We understand
that objective measures might not have direct correlation with
human listening tests. Objective measure provides a practical
way to tune parameters [33]. The following subjective listening
results would support our explanations.

4.3. Subjective Evaluation

To evaluate the quality and similarity of the converted speech
from these five systems, we conduct a subjective listening test
for Female-Male voice conversion and 20 listeners are invited to
evaluate 10 sentences in each system.

We carry out Mean Opinion Score (MOS) test for evaluating
speech quality. In the MOS test, comparing with target speech,
the grades of the converted speech are: 5 = excellent, 4 = good,
3 = fair, 2 = poor, and 1 = bad. Meanwhile, ABX preference test
is adopted to evaluate speaker similarity of the converted speech
among different systems. The results of MOS scores for speech
quality are shown in Fig. 5 and the preference bars for speaker
similarity are shown in Fig. 6.

4.3.1. DeRNN vs. NONE

Firstly, we would like to see the effectiveness of our proposed
approach in improving the performance of DBLSTM-based
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Figure 6: ABX preference test results for speaker similarity. The
p-values for the four bars are 1.36∗10−20, 0.171, 1.07∗10−11,
2.18 ∗ 10−10 respectively.
voice conversion system. For speech quality, we note that the
MOS score of DeRNN is significantly higher than that of NONE
shown in Fig. 5. Meanwhile, according to the first bar in Fig. 6,
it is obvious that DeRNN achieves much better performance than
NONE in similarity. These results confirm the effectiveness of
our proposed post-processing approach.

4.3.2. DeRNN vs. GV

We compare DeRNN with GV in speech quality. We note that
DeRNN achieves a higher MOS score than that of GV method
shown in Fig. 5. The performance of DeRNN is better than
that of GV in similarity as well according to the second bar in
Fig. 6. The results indicate that DeRNN outperforms GV-based
postfilter in both quality and similarity of the converted speech.

4.3.3. DeRNN vs. MS

We study the performances of DeRNN and MS shown in
Fig. 5 and the third bar in Fig. 6. The results show that
DeRNN significantly outperforms MS in both speech quality
and similarity.

4.3.4. DeRNN vs. RNN

Finally, DeRNN outperforms the RNN-based postfilter in both
quality and similarity in the MOS scores and the similarity
preference shown in Fig. 5 and the last bar in Fig. 6, respectively.
Moreover, the RNN-based postfilter achieves a higher MOS
score than NONE. It shows that RNN as a refining model is
efficient to some extent while its weights do not guarantee
convergence to the global minimum value.

5. Conclusions
In the paper, we define the residual error and treat the
conversion process of DBLSTM based voice conversion as a
local corrupted process, where the converted parameters are
considered as the corrupted target parameters. The denoising
RNN (DeRNN) model is proposed to be a post-processing
filter for reconstructing original target parameters from the
converted ones. Results show that our proposed approach
can achieve superior performance than other conventional
approaches in terms of quality and similarity of the converted
speech. In the future, we will apply denoising adversarial auto-
encoders [22] to the residual error problem for further improving
the quality and similarity of the converted speech. Some
samples for the subjective listening test are available via this
link:http://www.nwpu-aslp.org/attachments/
INTERSPEECH2017-DeRNN-Demo.pptx
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