112 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 1, JANUARY 2017

Modeling Latent Topics and Temporal Distance for
Story Segmentation of Broadcast News

Hongjie Chen, Student Member, IEEE, Lei Xie, Senior Member, IEEE, Cheung-Chi Leung, Member, IEEE,
Xiaoming Lu, Student Member, IEEE, Bin Ma, Senior Member, IEEE, and Haizhou Li, Fellow, IEEE

Abstract—This paper studies a strategy to model latent topics
and temporal distance of text blocks for story segmentation,
that we call graph regularization in topic modeling or GRTM.
We propose two novel approaches that consider both temporal
distance and lexical similarity of text blocks, collectively referred
to as data proximity, in learning latent topic representation, where
a graph regularizer is involved to derive the latent topic represen-
tation while preserving data proximity. In the first approach, we
extend the idea of Laplacian probabilistic latent semantic analysis
(LapPLSA) by introducing a distance penalty function in the
affinity matrix of a graph for latent topic estimation. The esti-
mated latent topic distributions are used to replace the traditional
term-frequency vectors as the data representation of the text
blocks and to measure the cohesive strength between them. In the
second approach, we perform Laplacian eigenmaps, which makes
use of the graph regularizer for dimensionality reduction, on latent
topic distributions estimated by conventional topic modeling. We
conduct the experiments on the automatic speech recognition
transcripts of the TDT2 English broadcast news corpus. The
experiments show the proposed strategy outperforms the conven-
tional techniques. LapPLSA performs the best with the highest
F1-measure of 0.816. The effects of the penalty constant in the dis-
tance penalty function, the number of latent topics, and the size of
training data on the segmentation performances are also studied.

Index Terms—Graph regularization, Laplacian probabilistic la-
tent semantic analysis, Laplacian eigenmaps, topic segmentation,
topic modeling.

I. INTRODUCTION

ITH the explosive growth of multimedia content (i.e.
W audio, video, or text), it becomes a challenge for user
to retrieve the exact information from a large database. Story
segmentation is the task of breaking down a multimedia stream
into homogenous units each embodying a main topic or coher-
ent story [1] for ease of information access. Studies in automatic
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segmentation have borne fruit over the last few decades, facili-
tating applications including information retrieval, text summa-
rization, segmentation of video feeds, etc.

A half-hour broadcast news program usually consists of mul-
tiple stories. Indexing such a broadcast news program, it is de-
sirable to divide the news program into a number of independent
stories. Manual segmentation is accurate but labor-intensive and
costly both in time and effort. Therefore, automatic story seg-
mentation is highly demanded. In this paper, we are interested
in story segmentation using the spoken content in the audio.

While story segmentation can be done using acous-
tic/prosodic cues in the audio stream [2]-[4], e.g., speaker
change, significant pause and pitch reset, the lexical-cohesion
based approaches that originate from text segmentation have
been shown to be effective for automatic segmentation of broad-
cast news [2], [4], [5].

In such approaches, in addition to performing segmentation
using speech transcripts, working directly on acoustic features
using segmental dynamic time warping [6], [7] has been ex-
plored. In this paper, we study the use of speech transcripts
provided by automatic speech recognition (ASR).

An ASR transcript is first segmented into a sequence of text
blocks, each having a fixed number of terms or/and being sep-
arated by pause interval, from which lexical cues are extracted.
Such story segmentation task can be considered as detecting
whether a text block involves the change of story.

By lexical cohesion, we believe that the terms in a coherent
story are likely to be semantically related, and different stories
tend to use different sets of terms. If we represent a text block
as a term-frequency vector, which is called a data point, the
cohesive strength between two text blocks can be measured by
the lexical similarity (e.g. cosine similarity) between the two
term-frequency vectors [8].

The traditional lexical-cohesion based approaches only con-
sider term statistics, without taking polysemy and synonymy
into consideration. To address the problems, topic modeling
techniques were studied to provide semantic level similarity
measurement. Probabilistic latent semantic analysis (PLSA) [9]
and latent Dirichlet allocation (LDA) [10] have recently become
the commonly used topic modeling techniques for story segmen-
tation and related tasks [11]-[13]. Note that topic modeling can
be viewed as a kind of dimensionality reduction techniques, in
which the term statistics in a text block is projected to a vector
of the distribution of latent topics.

Recently, Laplacian eigenmaps (LE) [ 14], as a manifold learn-
ing algorithm, has been adopted for dimensionality reduction
in story segmentation [15]. Manifold learning is a class of
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dimensionality reduction algorithms based on the assumption
that data come from a low-dimensional manifold embedded in
a high-dimensional ambient space. Although the dimensional-
ity of many natural data sets is usually high, they are often
generated by systems with much fewer underlying degrees of
freedom and thus have lower dimensionality. In the study for
story segmentation, the cohesive strength between data points
is typically defined by the lexical similarity between text blocks
and represented by a graph. LE finds a low-dimensional repre-
sentation for a text block through an affinity matrix of a time
sequence of text blocks, that we call data points, aiming at pre-
serving the intrinsic local geometric structure of the data. The
low-dimensional data represented by LE has been shown more
robust against ASR errors [15] than the original high dimen-
sional term-frequency vector representation.

Considering the running broadcast news as a time sequence
of text blocks, we observe that the temporal distance between
text blocks plays an important role in story segmentation [15].
By incorporating the temporal distance into the LE similarity
metric between data points, we achieved a better segmentation
performance. Intuitively, this design is particularly suitable for
story segmentation because if two text blocks are temporally far
away from each other, their data points should differ very much.
It is desired that such two text blocks are assigned to different
stories even if they share similar lexical terms.

This observation motivates us to take into consideration both
the cosine similarity and temporal distance of text blocks when
we measure the data proximity, and encode the data proximity
into an affinity matrix when learning the topics for story segmen-
tation. We propose two approaches to achieve this. In the first
approach, we extend the idea of Laplacian probabilistic latent
semantic analysis (LapPLSA) [16] from topic modeling of text
documents to that of sequential text blocks in transcripts [17].
This approach makes use of a graph Laplacian as a regulariza-
tion term in the objective function when estimating the latent
topic distributions. In the second approach, we perform LE,
which uses the graph Laplacian to perform dimensionality re-
duction, on the latent topic distributions that are estimated using
PLSA and LDA. In these two approaches, the common strategy
is to use the graph Laplacian to preserve the data proximity. We
conduct a comprehensive study on these two approaches. The
contributions of this paper are summarized as follows:

1) We propose a measure of similarity that incorporates
both cosine similarity and temporal distance between text
blocks in topic modeling.

2) We propose to preserve the data proximity in learning
latent topic representation for story segmentations, and
the proposed approaches outperform conventional topic
modeling.

3) We conduct a comparative study among LapPLSA, Lapla-
cian eigenmaps and conventional topic modeling in story
segmentation in face of ASR errors.

Note that there are other techniques, such as locally-consistent
topic modeling (LTM) [18], which also consider the nearest
neighbors of data points in topic modeling. LTM uses the
Kullback-Leibler divergence instead of the Euclidean distance
to describe the proximity between two latent topic distributions.

The performance of LTM in document classification and clus-
tering is similar to that of LapPLSA as reported in [19]. We
would like to highlight that the focus of this study is the integra-
tion of lexical similarity and temporal distance of text blocks in
story segmentation, thus LapPLSA here is used as a utility to
investigate the effectiveness of our strategy.

We also take note that, apart from LE, other manifold learn-
ing algorithms, such as Isomap [20] and locality preserving
projection (LPP) [21], also offer the low-dimensional data rep-
resentation of text blocks. These manifold learning algorithms
are related in the sense that, they represent the similarity of
data points by a graph, and they obtain low-dimensional em-
bedded representation by eigen-decomposition. However, they
are motivated to address different research problems, and may
not be suitable for this study, for example, Isomap is less robust
to noisy data than LE [22], which is perhaps not adequate for
imperfect ASR transcripts. LPP assumes that the mapping from
the original data representation to the low-dimensional one is
linear, which is not well grounded.

The rest of this paper is organized as follows: in Section II,
we give a brief overview on previous works related to the use
of topic modeling for broadcast news story segmentation and
provide the background of topic modeling.

Section III briefly presents the graph Laplacians for preserv-
ing locality of data. Section IV elaborates two ways to exploit
graph Laplacians in topic modeling. We present the overall
procedure of story segmentation in Section V. Experimental
setup are presented in Section VI, and experimental results and
analysis are provided in Section VII. Finally, we conclude in
Section VIII.

II. BACKGROUND OF TOPIC MODELING

Recently many studies have evidenced a paradigm shift from
bag-of-words modeling to topic modeling for data representa-
tion in lexical cohesion based story segmentation. The use of
topic modeling is found in different kinds of lexical cohesion
based approaches, which can be classified into local minimum
search in lexical similarity [12], [23], [24], similarity based clus-
tering [25]-[27] (also known as global optimization search) and
probabilistic modeling [13].

Topic model is a statistical model for discovering the
latent topic representations from a collection of documents.
Latent semantic analysis (LSA) [28] is the earliest topic
modeling approach to the segmentation of text [25] or spoken
documents [24]. PLSA [9] is a probabilistic variant of LSA
that offers a principled statistical formulation. PLSA has been
shown to outperform LSA in story segmentation [11]. In
probabilistic topic modeling, each document is represented
as a weighted mixture of latent topics, and each latent topic
is represented as a weighted mixture of terms. The weights
in a mixture of latent topics form a latent topic distribution,
which represents the document. The representation with latent
topic distribution facilitates topic level comparison between
documents. Generally the dimension of latent topic represen-
tation is significantly lower than that of term-frequency vector
representation.
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Despite the remarkable success of PLSA in broadcast news
story segmentation, one notices that the number of parameters
in PLSA grows linearly with the size of the corpora. This is
not desirable especially when a considerable amount of data are
involved [29]. To overcome this, Blei et al. proposed the latent
Dirichlet allocation (LDA) technique [10], in which the topics
of each document are described by a multinomial distribution
with a set of parameters generated from a Dirichlet distribution.
LDA has been proved to be effective in many related tasks [13],
[30], [31]. In [13], it was studied to jointly carry out story seg-
mentation and LDA topic modeling without the need of explicit
story boundaries in training data.

In topic modeling, typically a text block is treated as a doc-
ument, while the temporal distance between the text blocks is
not considered. Let’s first revisit some basic probabilistic topic
models. Formally, we define the following notations which will
be used throughout this section:

1) N textblocks are denoted by D = {d,ds,...,dn};

2) M unique terms that appear in the text blocks are denoted

by W = {wy,wa,...,wy };

3) K latent topics are denoted by Z = {21, 29, ..., 2K }.

A. Probabilistic Latent Semantic Analysis

Given the document corpus D and the term set W, probabilis-
tic latent topic analysis (PLSA) considers each term-document
co-occurrence, i.e., the occurrence of a term w,, € W in a par-
ticular document d,, € D, is associated with latent variables
z1, 29, ..., 2K . These latent variables can be considered as class
labels or latent topics.

The joint probability of co-occurrence pair (d,, , wy, ) € (D X
W) is defined as follows:

P(dn»wm) = P(dn)zp(w7n|zk)P(Zk|dn) (1)
k=1

in which the conditional probabilities P(w,, |z ) and P(z|d,, )
can be estimated by maximizing the log-likelihood:

M N

CPLSA - Z Z #(dnawm) log P(dnawm) (2)

m=1n=1

where #(d,, , w,, ) is the number of occurrences of term w,, in
document d,, .

The estimation of the conditional probabilities is performed
using expectation maximization (EM). EM alternates two
steps [32], [33]: (i) an expectation (E) step where posterior
probabilities are computed for the latent variables according to
the following equation:

P(wp |21) P(zx]dy)
S Plw |2)P(zldy)

P(Zk ‘dn , Wi ) = (3)

(ii) an maximization (M) step, where parameters P(w,,|z)
and P(z;|d, ) in Eq.(3) are updated according to the following

formulae:

Zr]zvzl #(dn ) ’wm)P(Z].: |d” ? wm)
Z;Y:l 2177\7[:1 #(dn y Wi )P(Zk |d” 4 wm)

M
P(z|dy) = KZmle#(dn,wm)P(zk,|dn,wm) s
Zl:l Zm:l #(dn 5 wm)P(Z[ ‘dnawm)

PLSA alternately applies the E-step and M-step until a conver-
gence threshold is met.

P(wmlzk) == ) (4)

B. Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) [10] is a generative prob-
abilistic model of a document collection. LDA considers that
documents are represented as random mixtures (drawn from a
Dirichlet distribution) over latent topics, though both PLSA and
LDA consider each topic as a distribution over terms.

The generative process of LDA can be summarized as follows:

1) For each document d, € D, pick a topic distribution
6, = (0,1,0,9,...,0,x) from aDirichlet distribution Dir(cx)
(denoted as 0,, | ~ Dir(«)) according to the following prob-
ability density function:

.
P(0, o) = T gt gt (g
[Ti=1 T'(ew)

where o = (1, az, ..., ax )’ is a Dirichlet prior on the topic
distributions with components oy, > 0, and I'(+) is the Gamma
function.

2) For each term in document d,, select a topic z; from
the 6, -specific multinomial distribution, denoted as zj|0,, ~
Multi(0,,).

3) Select a term w from P(w|zy, 3), which is a multinomial
distribution over terms in WW. Here 3 is a K x M matrix which
defines the term distributions; B, = (8k1, Bk2s- -, Ok ) 18
the distribution over terms in W for the latent topic z;, .

Variational inference [10] or Gibbs sampling [34] can be used
to estimate the parameters in the LDA model. LDA assumes that
the per-document topic distribution 6,, is generated from the
K -dimensional Dirichlet distribution rather than a large set of
individual parameters, which are directly linked to the training
data. In this way, LDA overcomes the overfitting problem.

III. BACKGROUND OF GRAPH LAPLACIANS

We have seen the use of graph Laplacians [35] in various tasks
in machine learning, including clustering [36], [37], manifold
learning [38] and semi-supervised learning [39], [40]. Graph
Laplacians are widely used to preserve the local geometric struc-
ture of data in an optimization task. Suppose that we have NV
data points {x, }»_,, where x,, € RM . For the graph of these
data points, we define an affinity matrix S whose elements are
pair-wise similarity among them. Given the affinity matrix S,
a corresponding graph Laplacian L can be defined typically
as L = C — S, where C is a diagonal matrix with elements

N
Cii = Zj:l Sij-



CHEN et al.: MODELING LATENT TOPICS AND TEMPORAL DISTANCE FOR STORY SEGMENTATION OF BROADCAST NEWS 115

To find a data representation to preserve the local geometric
structure of data, a function is usually defined as:

N Q
1
£=3 S lyi—vil? Sij:q;ququa ()

ij=1

where y; is the )-dimensional output representation for x;,
£, = [yl yd,....,y%]", and y! is the g-th element of y,, .

The locality preserving property is obtained when £ is min-
imized (e.g. || yi —y; ||* sij is small for all 4, 7). Intuitively
speaking, the minimization of £ ensures that when the similar-
ity connection sjj; between x; and x; is strong (i.e. the value
is large), the distance between their low-dimensional represen-
tations y; and y; remains small. Hence, we maintain that the
geometrical relationship between y; and y; is similar to that
between x; and x;.

In Laplacian eigenmaps, as a geometrically motivated algo-
rithm for data representation, £ serves as an objective function
that is minimized through eigen-decomposition, as will be de-
scribed in Section IV-B. Note that there exist other manifold
learning algorithms, such as locally linear embedding [41] and
locality preserving projection [21]. They are related to Laplacian
eigenmaps in one way or another.

The function £ can also be used as a regularization term in
many objective functions for various tasks. In topic modeling,
Laplacian PLSA [16] uses £ as a regularization term to be
minimized when maximizing the log-likelihood of a data set.
The optimization of its objective function is performed by the
generalized expectation maximization (GEM) algorithm [32],
which will be briefly presented in Section IV-A. It is worth
noting that the regularization term has also been used in other
data representation algorithms [42]-[44] for similar purposes.

IV. GRAPH REGULARIZATION IN TOPIC MODELING

In this paper, we study a Graph Regularization strategy in
Topic Modeling (GRTM) to learn the latent topic representation
for story segmentation. In the two approaches under the GRTM
strategy, we consider both temporal distance and lexical simi-
larity of text blocks (collectively referred to as data proximity)
in learning latent topic representation. A graph regularizer is in-
volved to derive the latent topic representation of the text blocks
in each type of approach.

The relationship between the text blocks is represented by a
graph. In the graph, each vertex represents a text block, and an
edge between two vertices represents the proximity between the
two text blocks. Then a document manifold can be approximated
through the graph.

We define the affinity matrix S = {s;;}¥,_, to denote the
proximity between the text block pairs. We adopt the cosine
measure between text block pairs to depict their lexical sim-
ilarity, and we incorporate the temporal distance between text
blocks into the affinity matrix. If two text blocks d; and d; in the
training data come from the same story, we put an edge between
nodes ¢ and j and define s;; as follows:

sij = cos(x;, x; )l (3)

where x; and x; represent the term-frequency vectors of the text
block d; and d;, cos(x;,x;) is the cosine similarity measure
between x; and x;, u/"~/| is the penalty as a function of the
temporal distance between ¢ and j, and y is a penalty constant
smaller than 1.0 that is tuned from a set of development data. The
penalty function is expected to reduce s;; dramatically when the
temporal distance is large. If they are not from the same story,
we set sij Lo zero.

Moreover, the affinity matrix is inevitably affected by noise
because of lexical choice, even if there are no ASR errors.
Such noise can be significantly reduced by adding the distance
penalty factor to the affinity matrix. An affinity matrix can be
visualized using a two dimensional dotplot as shown in Fig. 1.
Higher similarity values are represented by darker dots in the
figure. For brevity, Fig. 1(a) and (b) plot the affinity matrices of
a broadcast news program. In the ideal case, we expect some
dark squares along the diagonal of the dotplot, and the edges of
such squares suggest the story boundaries.

However, in reality as illustrated in Fig. 1(a), we observe that
the dark squares are not salient enough for direct story boundary
detection. There are also light dots in the dark squares and
considerable dark dots off the diagonal. As shown in Fig. 1(b),
the distance penalty factor effectively suppresses many dark
dots off the diagonal.

A. LapPLSA: Graph Laplacian as Regularization Term in
Objective Function

Neither PLSA nor LDA considers the local geometrical
structure in the documents. In the generative process of
topic modeling, there is no decipherable relation between
Pp = {P(d,)}"_, and the conditional probability distribution
P(z|d,). In contrast, Laplacian probabilistic latent semantic
analysis (LapPLSA) [16] makes a specific assumption about
the connection between Pp and P(z|d,). If two text blocks
di,d; € D are close in the intrinsic geometry of Pp space, Lap-
PLSA forces the conditional probability distributions P(z|d;)
and P(z|d;) similar to each other.

It has been shown that LE approach to story segmentation
benefits consistently from modeling the temporal distance [15].
In this paper, we continue to explore the use of temporal distance
under the LapPLSA framework [16]. We are inspired by the fact
that the regularization framework in LapPLSA has been proven
successful in information retrieval [45], [46] and social network
analysis [47].

The parameters of LapPLSA are estimated by maximizing
the following regularized log-likelihood:

K

CLapPLSA = CPLSA — A Z R, 9
k=1

N

mzéz

ij=1

2
(P(Zk|dz') _P(Zk|dj)> sij, (10

where X is a regularization weight, (pr.s is the log-likelihood
defined as in Eq.(2) for PLSA. Note that the regulariza-
tion term R that corresponds to the latent topic k can be
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Fig. 1.
penalty function of temporal distance ;1,"" ~J| are used.

written in the form of fkT Lf; similar to Eq.(7) where f; =
[P(z|d1), P(z1|d2), ..., P(zk|dn)]" . The regularization term
ensures that the geometrical relationship between P(zy|d;) and
P(z|d;) is similar to that between d; and d;.

It should be noted that data points in [16] are independent text
documents. But in this paper, a document is a text block in the
running text stream. Furthermore, the regularization term in this
paper involves both the temporal distance and lexical similarity
of text blocks as in Eq.(8), which is different from [16] that only
considers the lexical similarity in the geometrical relationship
of documents.

We follow the generalized EM (GEM) algorithm in [32] for
parameter estimation. Similar to the standard EM for the param-
eter estimation of PLSA, the GEM algorithm of LapPLSA are
updated iteratively by an E-step and an M-step until a conver-
gence threshold is met. The E-step in LapPLSA is the same as
that in PLSA. However, the M-step of the GEM algorithm finds
parameters that merely increase the expected data log-likelihood
rather than maximizing it.

B. Dimensionality Reduction on Latent Topic Distributions
With Graph Laplacian

We can also encode the data proximity of text blocks in a new
way by performing Laplacian eignmaps (LE) on the data rep-
resentations in form of latent topic distributions, which exploits
LE to conduct graph Laplacian regularization directly on latent
topic distributions. This approach works for any specific topic
modeling algorithms, and comes in handy when a topic model
is readily available. Moreover, LE has been proven effective
in characterizing times sequence of text blocks. Especially, the
low-dimensional data representation obtained from LE is rela-
tively more robust against ASR errors [15]. This motivates us to
study its interaction with two commonly used topic modeling
algorithms, namely PLSA and LDA, in this section.

We use LE to process the text blocks, which are represented
using latent topic distributions. We use X = {x, }"_; where
x, € R¥ torepresent the vectors of latent topic distributions as

120

=
(=1

«w
k=1

Index of text block, i

20 40 60 80 100 120
Index of text block,

(b)

Similarity between text blocks represented in an affinity matrix S: (a) only cosine similarity cos(x;,x; ) is used; (b) cosine similarity cos(x;,x;) and

inputdata. Weuse Y = {y,}"_, (y, € R?,Q < K < M,and
Y € RV*@) to represent the output embedded representation.

In LE, the following function similar to Eq.(7) is used as the
objective function to be minimized:

N Q
1
2 Dollyi—yy P sy =Y £ L, (11)
1,j=1 q=1
= tr(Y'LY), (12)

where £, = [y7, v, ...,y%]" and y? is the g-th element of y,,.
Again we define s;; as in Eq.(8) in order to include both tem-
poral distance and lexical similarity of text blocks in the affin-
ity matrix. Note that Eq.(12) rewrites the objective function
in form of a graph regularizer, 222:1 qu Lf,, which preserves
the data proximity of text blocks within the output embedded
representation.

A zero matrix and other matrices with the rank less than () are
also the solutions to minimize tr(Y?7LY) in Eq.(11), but they
are meaningless for the task. To prevent this from happening, we
impose the constraint Y7 CY = I where I is an identity matrix.
By the Rayleigh-Ritz theorem [48], we can obtain the solution
by using the matrix of eigenvectors corresponding to the @
smallest eigenvalues of the generalized eigenvector problem:

Lv = ACv. (13)

With this formula, we can stack the N-dimensional eigenvec-
tors v, v, ... ,V’Q in the order of their eigenvalues ; < Ay <
... < Aq to approximate the mapping matrix Y.

V. PRACTICAL ISSUES IN IMPLEMENTATION

The architecture of our story segmentation system is illus-
trated in Fig. 2. The ASR transcript is first segmented into a
sequence of text blocks. The starting point of each text block
marks a candidate of story boundary. The story segmentation
can be formulated as a detection task to determine whether
those candidates are story boundaries.
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Architecture of the proposed systems that segment automatic speech recognition (ASR) transcripts or manual transcripts into individual stories with (a)

topic modeling that is based on the LapPLSA framework and (b) topic modeling (e.g. PLSA and LDA) followed by LE.

We are interested in how to effectively characterize text blocks
with latent topic distributions. As illustrated in Fig. 2, the term-
frequency vector of each text block is projected to a vector
of latent topic distribution in both approaches. Note that the
parameter estimation in topic modeling from a set of training
data is not shown in the figure. The story boundary detection
is performed on the low dimensional vectors, each of which
represents a text block.

A. Estimation of Latent Topic Distribution

In PLSA and LapPLSA, the term-frequency vectors of the text
blocks from a set of training data are used for parameter estima-
tion as described in Section II-A and Section I'V-A respectively.
While each text block in the training set is a complete story, a
text block in the test set contains a sequence of terms segmented
by pauses or a predefined number of terms, which may or may
not constitute a complete story. The parameter estimation yields
two sets of parameters: the term distributions over latent topics
P(wy,|2k), and the topic distributions of training text blocks
P(zi|dy,). The former is used to perform a folding-in process
to obtain P(z|d’) for an unseen text block d’ in the test set.

In LDA, the hyperparameters (including o and 3) can be
estimated using the text blocks from the training data set. Given
the hyperparameters, the topic distribution 8" of each unseen
text block d’ from the test set is estimated. The above parameter
estimation can be done by variational inference [10] or Gibbs
sampling [34]. We employed a C implementation' of variational
inference for LDA with the convergence threshold, 1 x e to
estimate the parameters.

B. Story Boundary Detection

The data representation only provides a means of measuring
pairwise similarity between text blocks. We need a strategy to

Uhttps://www.cs.princeton.edu/ blei/lda-c/index.html

find a set of story boundaries in a running news program. A sim-
ple strategy could be that we locate the valleys in the sequence
of cohesive strength scores between adjacent text blocks. Story
boundaries are then identified at the positions where the cohe-
sive strength are weaker than a pre-set threshold. One of such
implementations is TextTiling, which performs well when there
are salient changes in the sequence of cohesive strength scores.
However, the topic transition between two adjacent news can
be gradual. In such cases, the changes in the score sequence
are subtle. The dynamic programming (DP) algorithm [6] is
known to partly address this problem by making a global de-
cision for a set of boundaries over the entire news program.
As reported in [15], DP consistently outperforms TextTiling for
news segmentation. Thus next we only use DP as the boundary
detector. With DP, the global optimal solution can be obtained
by minimizing:

N

S Jw—w )

R
t=1 i,jeSeg,

(14)

where u; and u; are the low-dimensional representation of
text block 7 and j respectively, Seg; indicates the text blocks
assigned to a hypothesized story, and N is the number of hy-
pothesized stories. Imposing a linear constraint on the story seg-
mentation [6], we can obtain the global minimization of Eq.(14)
using a DP algorithm in polynomial time [15]. The DP procedure
includes a forward process in which we compute the accumu-
lated scores of all possible segmentation paths within the search
area, and a back-tracing process in which we recover the best
set of segmentation boundaries. According to the principle of
Occam’s razor [49], if there are multiple solutions of Eq.(14),
we choose the one with the fewest segments.

VI. EXPERIMENTAL SETUP

To evaluate the approaches using our proposed GRTM strat-
egy, we carried out story segmentation experiments on the TDT2
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English broadcast news corpusz, which consists of 1,033 news
programs collected from VOA World News, PRI The World,
CNN Headline News and ABC World News Tonight. We di-
vided this corpus into three non-overlapping sets:

1) a training set of 500 programs, which was collected be-
tween January and March in 1998, for parameter estima-
tion in topic modeling and LE.

2) adevelopment set of 133 programs, which was collected
in April of 1998, for empirical parameter tuning.

3) atest set of 400 programs, which was collected between
the end of April and June in 1998, for performance eval-
uation.

To study the adverse effect due to ASR errors, we report ex-
periments on both manual transcripts and ASR transcripts pro-
vided in the corpus. The word error rate of the ASR transcripts
is around 30%. Story boundary tags are available in the both
types of transcripts. However, the time alignment information
of words and pauses is only available in the ASR transcripts.
At the training stage, the preprocessing steps for the ASR tran-
scripts and the manual transcripts were the same. Word streams
were divided into text blocks using the time labels of pauses in
the ASR transcripts. We used word unigram as the basic term
unit in the aforementioned topic models. If the pause duration
between two blocks was more than 1.0 second, it was considered
as a boundary candidate.

We conducted comprehensive experiments that covered seven
types of data representations, as summarized in Table I.
LapPLSA-DP, PLSA-LE-DP and LDA-LE-DP are proposed in
this paper that use graph regularization to model data proxim-
ity. PLSA-DP and LDA-DP use conventional topic modeling
without considering the data proximity.

Three widely-used evaluation metrics, including FI1-
measure [50], P, metric [51] and WindowDiff [52], were used
to evaluate the story segmentation performance. Higher values
of F1-measure or lower values of P, and WindowDiff indicate
better segmentation performance. Fl-measure is the harmonic
mean of precision and recall. When using F1-measure on ASR
transcripts, we followed the TDT?2 evaluation rule: a detected
story boundary is considered correct if it falls within a 15-
second tolerant window on each side of a reference boundary.
When the evaluation was on manual transcripts, we used a 40-
word tolerant window on each side of a reference boundary
instead. Pj, measures the probability that a hypothesized seg-
mentation is inconsistent with a reference segmentation when
moving a fixed-width window. Here we set k to be half of the
average reference segment length as [51] does. WindowDiff is
a modification of P metric, which measures the probability
that the number of hypothesized boundaries is not the same as
the number of reference boundaries when moving a fixed-width
window.

A number of parameters were set empirically based on the de-
velopment set. The convergence threshold in LapPLSA, PLSA
and LDA was set to 1.0 x 10~*. Unless stated otherwise, y in
the penalty function was set to 0.9, the number of latent top-
ics in topic modeling was set to 64, and the dimensionality

Zhttp://projects.ldc.upenn.edu/TDT2/

after LE projection was set to 32. For a fair comparison with
PLSA-LE-DP and LDA-LE-DP, the number of latent topics in
LapPLSA-DP was also set to 32.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

We first compare the proposed GRTM data representations
with the baseline reference systems. We then study the effect of
the penalty constant x, the number of latent topics, and the size
of training data during topic modeling. Through the study, we
review the training and runtime behaviors of different data rep-
resentation approaches, and suggest a way of setting parameters
in system development.

A. Comparison of Data Representations

We report the results of seven data representation approaches
in Fig. 3.

Firstly, the GRTM approaches consistently outperformed the
baseline approaches on both ASR and manual transcripts in
term of Fl-measure, P, and WindowDiff. And they greatly
narrowed the performance difference between ASR and man-
ual transcripts with relative 0.8-2.0% in F1-measure, relative
6.8-12.5% in P, and relative 3.5-8.7% in WindowDiff. This
suggests that the combination of latent topics and temporal dis-
tance carries complementary information in the data represen-
tation for story segmentation. Furthermore, LapPLSA outper-
formed PLSA/LDA-LE. Note that LapPLSA considers latent
topics and temporal distance jointly in parameter estimation,
while PLSA/LDA-LE models latent topics and temporal dis-
tance in a sequential fashion. Therefore, a joint consideration of
latent topics and temporal distance is seen as beneficial.

Secondly, LapPLSA and PLSA/LDA-LE outperformed TF-
LE, and PLSA/LDA outperformed TF on both ASR and manual
transcripts. This validates the finding that modeling of latent
topics is helpful in story segmentation [11], [17]. We believe
that topic modeling is less sensitive to lexical variations and it
handles polysemous words and synonyms in a better way.

Thirdly, PLSA/LDA-LE prevailed over PLSA/LDA for both
ASR and manual transcripts. This suggests that the graph Lapla-
cian with the consideration of temporal distance contributes to
a better story segmentation. We will discuss the effect of the
penalty function in the graph Laplacian, in Section VII-B. Sim-
ilarly, TF-LE outperformed TF, which was consistent with the
observation in [15].

In summary, the proposed GRTM strategy differs from TF-
LE [15] by introducing topic modeling into data representation.
It models both latent topics and temporal distance and consis-
tently outperformed other baseline reference systems.

B. Effect of the Penalty Constant pi

Fig. 4 illustrates the effect of the penalty constant 1 in PLSA-
LE-DP, LDA-LE-DP and LapPLSA-DP on the development
set. We observed that LapPLSA-DP consistently outperformed
PLSA-LE-DP and LDA-LE-DP at different values of . The
results on the development set suggest that = 0.9 would
be a good setting. Note that ¢+ = 1.0 is a special case when
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TABLE I
A SUMMARY OF SEVEN DATA REPRESENTATIONS FOR COMPUTING THE COHESIVE STRENGTH BETWEEN TEXT BLOCKS IN THE BASELINE REFERENCE SYSTEMS,
AND THE PROPOSED GRAPH REGULARIZATION IN TOPIC MODELING STRATEGY AS ILLUSTRATED IN FIG. 2

Systems Data Representations Latent Topic Temporal Distance
Modeling Modeling
Baseline Systems TF-DP [6] Term Frequencies No No
PLSA-DP Latent Topic Distributions Yes No
LDA-DP Latent Topic Distributions Yes No
TF-LE-DP [15] Graph Regularized Dimensionality Reduction (LE) on No Yes
Term Frequencies
Graph Regularization in Topic PLSA-LE-DP Graph Regularized Dimensionality Reduction (LE) on Yes Yes
Modeling (GRTM) Latent Topic Distributions
LDA-LE-DP Graph Regularized Dimensionality Reduction (LE) on Yes Yes
Latent Topic Distributions
LapPLSA-DP Graph Regularized Latent Topic Distributions Yes Yes
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Fig. 3.

Segmentation results using different data representations on ASR tran-
scripts (blue bars) and manual transcripts (red bars) on the test set in terms of
different evaluation metrics: (a) F1-measure; (b) Py ; (¢) WindowDiff.

Fig. 4.

Effect of the penalty constant p on the development set.
(a) Fl-measure; (b) Py ; (¢) WindowDiff.
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Fig.5. Segmentation results on the development set with different number of
latent topics. (a) Fl1-measure; (b) Py ; (c) WindowDiff.

the distance penalty function has no effect on the cosine sim-
ilarity in Eq.(8) between two text blocks. For each approach
illustrated in Fig. 4, comparing the performance with p = 1.0
and that with ¢ < 1.0, we can be sure that the temporal dis-
tance is beneficial to story segmentation. The observation was
similar to that in the experiments on the TDT2 Mandarin and
CCTV Mandarin broadcast news corpora in [15]. This exper-
iment also shows that the choice of p is important under the
GRTM strategy.

C. Effect of the Number of Latent Topics

Fig. 5 reports the effect of the number of latent topics on
the development set for the five approaches that involve topic
modeling. We observed that LE projection improved PLSA or
LDA consistently at different numbers of latent topics. In terms
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Fig. 6. Segmentation results on the development set with different amounts
of training data. (a) F1-measure; (b) P}, ; (c) WindowDiff.

of Fl-measure and WindowDiff, LapPLSA-DP outperformed
other topic modeling approaches in general.

It is worth noting that the PLSA and LDA based approaches
gained optimal results when the number of latent topics was set
between 64 and 96. However, LapPLSA was optimal when a
smaller number of latent topics (between 32 and 64) was used.
This observation suggests that LapPLSA can potentially provide
a more compact, i.e. low-dimensional, data representation than
PLSA and/or LDA.

D. Effect of the Size of Training Dataset

We increased the training set from 50 programs to 500 pro-
grams (by 50 programs at a time) to evaluate the effects of
different of size of training data in the topic modeling related
approaches. Fig. 6 illustrates the results on the development
set.
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We observed that all approaches in general benefited from an
increasing size of training data. LapPLSA-DP achieved the best
performance (Fl-measure of 0.8172, P of 0.1324 and Win-
dowDiff of 0.1801), when trained on 500 programs of data.
It was encouraging to see that LapPLSA-DP outperformed
the other four approaches in most of the cases when differ-
ent sizes of training data were used. Moreover, when applying
LE projection on PLSA or LDA topic distributions, we achieved
consistent performance gains over the PLSA or LDA baseline
counterparts.

VIII. CONCLUSION AND FUTURE WORKS

We have proposed to incorporate the temporal distance be-
tween text blocks into the similarity metric in topic modeling
for text block representation in story segmentation. Two ap-
proaches under the proposed GRTM strategy consistently out-
perform PLSA and LDA. We find that the distance penalty
function in the affinity matrix is crucial to the segmenta-
tion performance. We also find that LapPLSA provides a
more compact data representation than PLSA and LDA. Al-
though we used the DP algorithm in all experiments as a
boundary detection search strategy, we believe that the pro-
posed GRTM strategy also works for other boundary detection
strategies.

While both topic modeling and manifold-based dimension-
ality reduction, such as LE, are robust against ASR errors, this
study suggests that topic modeling is more effective than LE
when the two techniques act alone. We note that the choice of
penalty constant, the number of latent topics, and the size of
training data are task-dependent. This study suggests a way to
configure a system in a specific task.

In the future, we plan to investigate several aspects of the pro-
posed strategy. 1) Extension to Bayesian non-parametric topic
models. In this study, we assume that a development set is avail-
able for setting the parameters. As a future work, we hope to in-
vestigate how to integrate the proposed strategy into a Bayesian
non-parametric framework [53], [54], when a development set is
not available. 2) Generalization to online topic modeling. In this
study, topic models are studied a offline batch process. We are in-
terested in further this study for online topic modeling and story
segmentation. 3) Extension to deep neural network based text
block representation. The recent research on distributed repre-
sentations of text based on deep neural network (DNN) models,
e.g. the continuous bag-of-word model (CBOW) and the skip-
gram model [55], sentence and document embedding [56]-[58],
etc., represents a new way of semantic representation. It would
be interesting to study the interaction between our strategy and
those semantic representations for story segmentation.
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