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Abstract
We present I2R-NWPU team’s entry to Blizzard
Challenge 2017 in this paper. Like our previous entry,
we still adopt the general deep neural network (DNN)
guided unit selection and waveform concatenation
method to synthesize the speech. But we make several
important improvements to our previous system. Phone
duration and frame level acoustic parameters are
modelled with long short-term memory (LSTM)
recurrent neural network (RNN). But this time we keep
the hidden Markov model (HMM) to assist pre-selection.
Phone level instead of frame level units are used in the
selection and concatenation process. In synthesizing the
speech, the Kullback-Leibler Divergence (KLD)
between the predicted target and the candidate spectrum
HMMs is used to preselect the units. Then the duration
and acoustic parameters of the preselected units are
predicted with the LSTM-RNN models. The final units
are selected with the Viterbi algorithm based on the
target and concatenation costs calculated against the
predicted trajectory. The listening tests show
improvement compared with our previous system.
Index Terms: Blizzard Challenge 2017, Text-To-Speech,
LSTM-RNN, HMM, Unit Selection

1. Introduction
The EH1 task of Blizzard Challenge 2017 is essentially
the same as the previous year. The participating teams
are given several hours of audiobook data of the
children’s story genre, including speech and text, and
then asked to synthesize 6 new audiobooks, 200 news
items and 200 semantically unpredictable sentences
(SUS). The text given is partially transcribed. The
submitted synthesized speech is evaluated with
systematic listening tests involving a variety of listeners.
Compared with the task of the previous year, the only
difference is that more data (the testing audiobooks from
the previous year) are provided.

For Blizzard Challenge 2016 we adopted a deep
neural network guided trajectory tiling method to build
our text-to-speech (TTS) system [1]. Phone duration and
acoustic parameters including LSP, F0 and V/UV flag
are modelled with deep neural network in the training
phase. In the synthesis phase, for each sentence phone
duration and frame level acoustic parameters are
predicted with the trained models. Then the trajectory
tiling method [2] was used to synthesize the target
waveform.

For Blizzard Challenge 2017 we make several
important adjustments to our system. First, the units are
changed from frames to phones. In synthesizing the
target waveform, we select candidate phones and
concatenate them together. Second, we use KLDs
between spectrum HMMs of candidate and target
phones to preselect the candidates. Third, in accordance
with the unit change the target and concatenation costs
are also redefined.

The rest of the paper consists of the following sections.
In Section 2 we describe how we process the given data
in preparing for the system building. The system building
itself is presented in Section 3. The evaluation results
are reported and analyzed in Section 4. And finally we
summarize our work in Section 5.

2. Data Processing
2.1. Transcription and Alignment

The several audiobooks added to the training dataset this
year are not transcribed. So the first thing we do is to
transcribe these new audiobooks. The provided audio
files are converted to 16K Hertz 16 bits wave files. Then
they are split into sentences and the corresponding text is
split accordingly. These new data are combined with the
training data from last year. The combined training data
go through the same alignment process as last year. Our
phone alignment is based on a model in our Automatic
Speech Recognition (ASR) engine trained with a large



database.

2.2. Full-Context Labels Generation

The phone level full-context features we use this year are
the same as last year. They include features on phoneme,
syllable, word and syntactic phrase levels. They are to a
large extent based on [3]. And we add the syntactic
features following [4]. However, this year’s full-context
labels are generated on the basis of the ASR alignment
results. Compared with last year’s method there are two
differences. First, the phone sequence of a word is based
on the recognition result, instead of being arbitrarily
picked from the dictionary. Second, silences are also
inserted on the basis of the recognition result. In this
way, the full-context labels generated match the speech
database more closely.

2.3. Sentence Features Generation

Due to the large variance of prosody in the audiobooks,
it’s necessary to differentiate the types of sentences. We
planned to include this in our entry to Blizzard
Challenge 2016, but didn’t manage to achieve that in
time. This time we do put it in. Specifically, for each
sentence or part of sentence we consider two kinds of
properties: the relation to the quotation marks and the
ending punctuation. For the former we define 4 possible
values: 1 - within quotation; 2 - adjacent to quotation; 3
- far away from quotation; 0 - undefined. Value 2 covers
parts of sentences such as [he said], [Tom asked], which
are adjacent to quotation. We assume different values
correspond to different prosodic styles. The ending
punctuation also correlates with prosody. Questions and
statements are obviously read differently. Besides these
two features we include the sentence length in terms of
word count as well. So we have totally 3 sentence
features.

These sentence features are first computed on the
word level. We consider the previous and next sentences
together with the current one. We also include the
forward and backward positions of a word in the
sentence it belongs to. Therefore, for each word we have
an 11 dimensional feature vector: 2 dimensions for word
position, 3 sentence features each for the previous,
current and next sentences. After these word level
features are computed they are distributed to the phones
which the word contains. So finally we have some extra
features corresponding to the phone level full-context
features.

We build systems with and without the sentence
features described above and find that sentence features
have significant positive effect.

2.4. Speech Data Filtering

In order to remove the over expressive audio files, we
clean the dataset according to the phone duration and the
F0 features. Some utterances containing mimetic words,
such as shout and cry, might be exaggerated. The over
expressive utterances usually have abnormal durations
which are much longer or shorter than the average
duration of phone. We cleaned these utterances out of
the dataset, including 147 utterances, about 2.06%. The
second method is to choose utterances according to the
fundamental frequency (F0). In this case, the utterances
with excessive low or high frequency are removed,
which constitute a subset of 174 utterances, about 2.44%
of the dataset. The removed utterances might be singing,
onomatopoeia and over stressed utterances.

3. System Building
The TTS system we submitted this year still belongs to
the category of DNN-guided unit selection. Generally
phone duration and acoustic parameters are modelled
with deep neural networks using the provided dataset in
the training phase. In the synthesis phase, phone
duration and acoustic parameters are first predicted, and
then they are used to guide the target unit selection.
Finally the selected units are concatenated to make the
target waveform.

The architecture of the system is depicted in Figure 1.
The top part is already discussed in Section 2. For HMM
training we use the standard HMM-based speech
synthesis system (HTS) package [5]. The spectrum
parameters we use are mel-generalized cepstral (MGC).
The text analysis in the synthesis phase is a little
different from that in the training phase. In the training
phase the phone sequence of a word is based on the ASR
alignment. This is impossible in the synthesis phase.
Instead, the phone sequence of a word is determined by
the first instance in the dictionary. And breaks are
inserted in the middle of a sentence on the basis of a set
of rules applied to the syntactic tree, built with the ZPar
package [6]. In unit pre-selection we pick 100 candidate
units which have the smallest weighted KLDs from the
target unit. Next we discuss the remaining major
components in turn.

3.1. Phone Duration and Acoustic Parameter
Modelling with LSTM-RNN

LSTM-RNN, introduced in 1997 [7], has been proved to
be a very effective sequence modelling tool. A
bidirectional RNN [8] captures the context more
effectively. These two types of RNNs later were
combined together to construct the bidirectional
LSTM-RNN, or BLSTM-RNN for short.

A hybrid of DNN and BLSTM-RNN is built for our
phone duration prediction and acoustic modelling. There
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Figure 1: System Architecture.

are 6 hidden layers, where the bottom 3 hidden layers are
feed-forward structure with 1024 nodes per layer, while
the top 3 hidden layers are LSTM-RNN structure (512
forward nodes and 512 backwards nodes).

Input feature vectors for duration prediction are
generated from the full-context labels we get from
Section 2 and time-aligned frame-by-frame with the
output features. The categorical features like phoneme
IDs, POS types, and phrase types are converted into
binary features. The positions of phonemes, syllables
and words are numerical features. There are totally 797
dimensions in the input vectors, where 695 dimensions
are binary features for categorical linguistic contexts, 51
dimensions are numerical linguistic contexts, and 51
dimensions are sentence-level features.

The input feature vectors for frame level acoustic
modelling are almost the same as those for duration
prediction, except 4 dimensions containing frame
information are added. Of these, 3 dimensions are for
coarse coded position of the current frame and 1
dimension for duration of the current segment. The
output of the acoustic modelling network is a vector of
187 dimensions, which consists of MCCs, BAPs, log F0

and their delta and delta-delta features, plus a
voiced/unvoiced flag.

We use the Merlin package [9] and the Computational
Network Toolkit (CNTK) [10] to extract the acoustic
parameters and train the deep neural networks.

3.2. Unit Selection

In selecting the optimal units for a target sentence, we
follow the standard dynamic programming-based search
according to target and concatenation costs [11].

3.2.1. Target and Concatenation Costs

With the predicted acoustic trajectory as the reference,
the target cost of a candidate unit is straightforward to
define. It’s basically the acoustic distance between the
candidate unit and the corresponding target unit.
Specifically, it’s defined as follows:

Ct = wdur |dt − dc|+ wf0Df0 + wapDap

+ wspDsp, (1)



where Ct is the target cost, dt and dc are the target and
candidate phone durations, Df0, Dap and Dsp are the F0,
aperiodicity and spectrum distances, and wdur, wf0, wsp

and wsp are the corresponding weights.
In most cases the durations of the target and candidate

phones are different. To handle this issue we do a simple
linear alignment of the frames. We prefer a simple
alignment to minimize the computation cost. On the
aligned frames, Df0, Dap and Dsp are defined as the
mean absolute log F0 difference, absolute aperiodicity
difference and Euclidean distance between the spectral
parameter vectors.

In calculating the concatenation cost we consider two
major factors: the continuity of candidate units in the
speech database and the boundary distance between two
adjacent candidate units. The first is meant to favor
bigger chunk of natural speech. And the second is for
making the synthesized speech as smooth as possible.
So the concatenation cost is defined as follows:

Cc = wfragCfrag + wboundDbound, (2)

where Cc is the concatenation cost, Cfrag is the
fragmentation cost, Dbound is the boundary distance,
and wfrag and wbound are the corresponding weights.

All the weights are manually tuned. To facilitate the
weight tuning, some distances are normalized to bring
them to the same scale.

3.2.2. Dynamic Programming-based Search

With the target costs of single candidate units and the
concatenation costs between adjacent candidate units,
Viterbi search is used to find the candidate unit path that
has the least accumulated joint costs. To do a complete
search in the whole unit path space is very computation
costly. Therefore, pruning has to be applied in order to
make the search computationally manageable. One kind
of pruning is candidate unit pre-selection. This is based
on the combined KLDs between the predicted target
HMMs and the candidate HMMs. Target costs are only
computed for pre-selected units. Another kind of
pruning is applied to the candidate unit paths. In Viterbi
search the candidate paths are constructed unit by unit.
At each step we only keep a certain number of optimal
candidate paths before we move on to the next unit.
Both the number of pre-selected candidate units and the
number of candidate paths kept are tunable parameters
of the system.

3.3. Waveform Concatenation

To further improve the smoothness of the synthesized
speech, we also use some techniques in waveform
concatenation. Naturally adjacent units are concatenated
directly to keep naturalness. Other units are
concatenated with triangular cross-fading method. The

cross-fading point is optimally selected according to
certain measure. The measure is the Euclidean distance
between the overlapping segments from the two units to
be concatenated. To do this extension has to be made
when we take the waveforms of the units from the
database.

4. Subjective Evaluation Results
The submitted synthesized speech files go through
comprehensive listening tests. The listening tests include
four major parts. Part 1 consists of two
multi-dimensional tests of the book paragraphs. The
tested dimensions are overall impression, pleasantness,
speech pauses, stress, intonation, emotion and listening
effort. Part 2 contains two naturalness tests of the book
sentences. Part 3 is a similarity test of the book
sentences. The listeners are requested to judge how
similar the synthesized speech is to the provided speech.
This is a restriction on using extra speech data. Part 4
consists of two intelligibility tests of the SUS speech.
The sentences tested in this part are semantically
unpredictable, so it’s difficult to guess a word through
the surrounding words. The listeners are requested to
write down the words after single listening of a sentence.
Three types of listeners are involved in the tests: paid
listeners, online volunteers and speech experts.

In reporting the test results we include the overall
impression, naturalness, similarity and intelligibility as
evaluated by all types of listeners. We compare our
results of this year with those of last year. We also
compare our results with other sytems. All the figures
show results of all the systems. System A, B, C and D
are for references. They are not submitted by the
participating teams. A is natural speech. B is the unit
selection system benchmark. C is the HTS system
benchmark. And D is the DNN system benchmark. Our
system is labelled ”K” this year.

Figure 2 shows the boxplot of the overall impression
MOS of audiobook paragraphs given by all listeners for
all the systems. Compared with our score last year there
is some improvement in the overall impression MOS this
year. We also see improvements in some other
participating teams. So our ranking is about the same.
However, now we surpass system D and is on a par with
system B, the best synthesized reference system, in this
respect, as the significant difference matrix shows.
Figure 3 shows the boxplot of the naturalness MOS of
all the systems given by all listeners. We also make
improvement in this respect. Figure 4 shows the boxplot
of the similarity MOS of all the systems given by all
listeners. Here we see more significant improvement.
These improvements to a large extent result from our
changing the units from frames to phones. Figure 5
shows the word error rate of all the systems based on the
evaluation of all listeners. There is an increase in the
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Figure 2: Boxplot of overall impression MOS of
audiobook paragraphs.
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Figure 3: Boxplot of naturalness MOS.

absolute value of WER compared with our result of last
year. But all the systems experience the same increase.
Factoring out this system shift, there is no degradation of
our system in intelligibility from last year.
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Figure 4: Boxplot of similarity MOS.
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5. Conclusion
In this paper we present our entry system to Blizzard
Challenge 2017. Again we adopt a general deep neural
network guided unit selection and waveform
concatenation architecture as last year. But we make
several important adjustments to our system this year.
They include changing the units from frames to phones,
incorporating sentence features, spectrum HMM KLD



based unit pre-selection and new ways of calculating the
target and concatenation costs. Subjective evaluation
results demonstrate that we’ve made significant progress
since last year. But compared with other better systems
we could improve our system further in the future.
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