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Abstract
We use query-by-example keyword spotting (QbyE-KWS) ap-
proach to solve the personalized wake-up word detection prob-
lem for small-footprint, low-computational cost on-device ap-
plications. QbyE-KWS takes keywords as templates, and
matches the templates across an audio stream via DTW to see if
the keyword is included. In this paper, we use neural networks
as acoustic models to extract DNN/LSTM phoneme posterior
features and LSTM embedding features. Specifically, we inves-
tigate the LSTM embedding feature extractor for different mod-
eling units in Mandarin, spanning from phonemes to words. We
also study the performances of two popular DTW approaches:
S-DTW and SLN-DTW. SLN-DTW manages to accurately and
effectively search the keyword in a long audio stream without
the segmentation procedure that is used in S-DTW approaches.
Our study shows that DNN phoneme posterior plus SLN-DTW
approach achieves the highest computation efficiency and the
state-of-the-art performance with 78% relative miss rate reduc-
tion as compared with the S-DTW approach. Word level LSTM
embedding feature shows superior performance as compared
with other embedding units.
Index Terms: Keyword Spotting, Wake-up Word Detection,
DTW, Query-by-Example, DNN, LSTM

1. Introduction
With the rapid development of speech recognition in recent
years, a variety of applications with speech interfaces have
emerged, such as direct voice input, mobile assistant and in-
telligent loudspeaker etc. As the very first step to activate these
speech interfaces, wake-up word detection aims to use a specific
word to wake-up an automatic speech recognition (ASR) mod-
ule with a fully hand-free experience. Besides, as a keyword
spotting (KWS) technique, it can also be used for command and
control functions. For example, some smartphones have voice
controlled camera enabled by a speech keyword.

According to whether the keyword is set in advance or can
be defined by users, wake-up word detection or keyword spot-
ting can be divided into two categories: fixed KWS and person-
alized KWS. The former uses predefined keyword to activate
devices. For instance, Amazon Echo uses “Alexa” to activate
its voice assistant and Google uses “Okay Google” to access
voice services. The latter supports users to customize their own
keywords or set different wake-up words for different devices.
Users can enroll their own wake-up word by speaking it several
times, and use it to activate their own devices. With the prolif-
eration of smart devices, personalized KWS has many potential
applications due to its flexibility and individuality.

In the speech-enabled applications mentioned above, a

wake-up module has to listen consistently on an embedded or
mobile device. A small memory footprint and low computa-
tional cost solution, suitable for on-device applications, is thus
highly desired. To effectively use personalized keywords for
on-device applications, a QbyE-KWS system can be favorably
considered. As a typical solution, QbyE-KWS takes keywords
as templates, and matches the templates across an audio stream
via dynamic time warping (DTW) to see if the keyword is in-
cluded.

During the past several years, neural networks have re-
emerged as a powerful tool in acoustic modeling [1, 2] and fea-
ture learning [3, 4]. Recently, deep neural networks (DNNs)
have been suggested as exceptional feature extractors in DTW-
based QbyE-KWS [5, 6, 7, 8]. For example, keyword and seg-
ment in testing audio can be represented respectively by a se-
quence of DNN-generated phoneme posteriors, and a sliding
variant of DTW – segmental DTW (S-DTW) [9], is employed to
measure the distance between them. Very recently, Chen et al.
use recurrent neural network (RNN) with long short-term mem-
ory (LSTM) cells as a sequence feature extractor to embed key-
words and testing audio segments into a fixed-dimension vec-
tor representation, respectively. With fixed-dimension vectors,
the similarity between keywords and testing audio can be easily
measured by a typical distance measure, e.g., cosine, bypassing
the time-consuming DTW computation. Specifically, they sug-
gest that using whole word as the embedding target can achieve
superior performance in personalized wake-up word detection
because of LSTM’s long context modeling ability.

In this paper, we provide a systematic investigation on neu-
ral network based QbyE-KWS approach for personalized wake-
up word detection in Mandarin Chinese. Specifically, we use
neural networks to extract features, which include LSTM em-
bedding features [5] and DNN/LSTM phoneme posterior fea-
tures. We also study the QbyE-KWS performances of two pop-
ular DTW approaches: S-DTW and segmental local normalized
DTW (SLN-DTW). Our contributions are as follows.

• We investigate the LSTM embedding feature extrac-
tor for different modeling units in Mandarin. As we
know, Chinese has multiple phonetic and linguistic
units: tonal/non-tonal phonemes, tonal/non-tonal sylla-
bles, characters and words. We would like to see which
unit provide the best performance in LSTM feature ex-
tractor based personalized wake-up word detection.

• We introduce the SLN-DTW [10, 11, 12, 6] to QbyE-
KWS based wake-up word detection. SLN-DTW man-
ages to accurately and effectively search the keyword in
a long audio stream without the segmentation procedure
that is used in S-DTW approaches.



Our study shows that DNN phoneme posterior plus SLN-DTW
approach has highest computation efficiency and achieves the
state-of-the-art performance with lowest miss rate of 0.029 at
0.005 false alarm rate. Word level LSTM embedding feature
shows superior performance as compared with other embedding
units.

2. Neural Network based QByE KWS
As shown in Figure 1, a typical QbyE-KWS system consists
of two modules – feature extraction and keyword searching. A
representative feature is critical to the performance of keyword
searching. Although popular acoustic features, e.g., MFCC,
FBank, PLP, can be directly used, model-based features, e.g.,
phoneme and Gaussian posteriors [13, 9], have shown more dis-
criminative power over acoustic features and thus lead to supe-
rior performance. Especially with the dominance of deep neural
networks, DNN-derived features like DNN posteriors [13] and
bottleneck features [6, 7, 8] achieve extraordinary performance
in QbyE-KWS. Meanwhile, LSTM models are used to embed
an audio sequence to a fixed-length representation [5]. In the
second module, a distance measure is used for keyword search
that compares the keyword template against the testing audio.
Based on the feature representation used, usually DTW or some
common distances, e.g., cosine, are employed in the matching.

2.1. Segmental DTW based KWS
We cannot directly measure the similarity between the enroll-
ment keyword and testing audio using an ordinary DTW. This
is because a KWS system designed for wake-up applications
needs to listen continuously to the input sound. Zhang et al. [9]
proposed to divide the testing audio stream into segments using
a sliding window. On each segment, DTW is used to measure
its distance with the keyword template. If the matching score
goes beyond a pre-set threshold, a keyword is considered to be
spotted. In practice, the segment length is set to that of the key-
word template. This approached is called segmental DTW or
S-DTW for short. Please note that, to minimize the missing rate
of the keyword, segment overlapping is usually used.

As shown in Figure 1(a), the enrollment keyword and the
runtime utterance firstly go through an NN feature extractor, re-
sulting in frame-level NN phoneme posteriorgram features. The
runtime utterance, represented in frame-level NN phoneme pos-
terior vectors, is cut to keyword-sized segments and a distance
matrix between the keyword and each segment is calculated. A
confidence score is then computed from the DTW alignment
cost. When the cost exceeds some threshold, a keyword is con-
sidered to be detected. Note that different NN models, e.g.,
feed froward deep neural networks and Recurrent neural net-
work (RNN) can been used.

2.2. LSTM Feature Extractor based KWS
Due to the long sequence modeling ability of LSTM, Chen
et al. [5] propose an LSTM feature extractor to embed audio
segments of varying lengths into a fixed-dimension represen-
tation. Hence the similarity of two sequences can be mea-
sured directly using a simple distance like cosine. Given an
input sequence X = {x1, x2, ..., xn}, the output of LSTM
hidden layer and last layer are H = {h1, h2, ..., hn} and
Y = {y1, y2, ..., yn}, respectively. Because of the mem-
ory mechanism of LSTM, it is believed that the last k frame
of the output H∗ = {hn−k+1, hn−k+2, ..., hn} and Y∗ =
{yn−k+1, yn−k+2, ..., yn} contain most information of se-
quence X. If we select same k frames as feature vectors for

varying length of sequences, we could get the LSTM embed-
ding representation of these sequences.

As shown in Figure 1(b), at the enrollment stage, we stack
last k frames of LSTM RNN’s last hidden layer activations as
keyword’s embedding representation. In practice, if multiple
templates are used for each keyword, e.g., user says the key-
word several times to enroll to the system, we use DTW-based
template average [10, 5] to get a new embedding representa-
tion of the enrollment keyword. Note that the enrollment is an
offline procedure.

At runtime stage, similarly, we extract LSTM embedding
features for the runtime utterance, and then a sliding window is
employed to segment the test audio. The sliding window size
to usually set to k frames, so we can measure the similarity
between the keyword and the runtime utterance using cosine
distance of stacked vectors between keyword and runtime utter-
ance segments.

2.3. Segmental Local Normalized DTW based KWS
The above KWS systems both need a sliding window to seg-
ment the runtime utterance. Besides, the window size and shift-
ing size are usually determined empirically and affect the KWS
performance if set improperly. In contrast, segmental local nor-
malized DTW (SLN-DTW) [10, 14, 15] can mange to effec-
tively search the keyword in a long audio stream without the
segmentation procedure.

Given two sequences of feature vectors extracted from
the DNN feature extractor, Q = {q1, q2, ..., qn} and S =
{s1, s2, ..., sm}, corresponding to an enrollment keyword and
a test utterance, cosine or other distance matrix dist is calcu-
lated, where dist(i, j) represents distance between frame i of
the keyword and frame j of the test utterance. SLN-DTW aims
to find a path in the distance matrix dist, starting from (1, s) to
(n, e) (where 1≤b≤e≤m), which minimizes the average accu-
mulated distance cost(i, j) = a(i, j)/l(i, j), where a(i, j) is
the accumulated distance from (1, s) to (i, j) and l(i, j) is the
path length of (1, s) to (i, j). Dynamic programming algorithm
is used to find best matching score, as described below.

1. Initialize a and l:{
a(i, 1) =

∑i
k=1 dist(k, 1)

l(i, 1) = i
(1)

{
a(1, j) = dist(1, j)
l(1, j) = 1

(2)

where i = 1, 2, ..., n and j = 1, 2, ...,m.

2. For i > 1 and j > 1 , select (u, v) from Φ = {(i −
1, j), (i, j − 1), (i− 1, j − 1)}:

(u, v) = argmin
(u,v)∈Φ

a(u, v) + dist(i, j)

l(u, v) + 1
(3)

and then, {
a(i, j) = a(u, v) + dist(i, j)
l(i, j) = l(u, v) + 1

(4)

3. Finally, min
j=1,...,m

(cost(n, j)) is the best matching score

between the keyword and the testing utterance.

3. Experimental Setup
3.1. Training of Feature Extractors
The neural network we trained are shown in Table 1. We first
trained feed-forward DNN phoneme recognizers and LSTM
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Figure 1: Three different QbyE-KWS approaches for wake-up word detection.

Table 1: Configurations of neural network models
model input layers output/target parameters

DNN phoneme
recognizers

(10+1+5)
Fbank

5-layers,
128 units

62 non-tonal phones 156k
214 tonal phones 175k

LSTM phoneme
recognizers

Fbank at
current frame

2-layers,
128 cells

62 non-tonal phones 227k
214 tonal phones 246k

LSTM embedding
feature extractors

Fbank at
current frame

2-layers,
128 cells

62 non-tonal phones 219k
214 tonal phones 219k

435 non-tonal syllables 219k
1734 tonal syllables 219k

4399 Characters 219k
15000 Words 219k

phoneme recognizers with tonal and non-tonal phoneme targets.
They are used for S-DTW and SLN-DTW based KWS experi-
ments. LSTM embedding feature extractors keep the same in-
put and network structure with the LSTM phoneme recogniz-
ers. Different from [5], in Mandarin, we tried different embed-
ding units, i.e., tonal/no-tonal phonemes, tonal/no-tonal sylla-
bles, characters and words.

We use a window of 25ms with 10ms shifting to ex-
tract frame-level 40-dimension log filterbank (FBank) energy
as spectral features, used as neural network input. All above
NN models were trained using Kaldi [16] on a Mandarin cor-
pus with 1115 hours of speech (sampling rate: 16KHz) recorded
from over 4000 speakers. Stochastic gradient descent criterion
with momentum parameter is used to optimize the models.

3.2. Wake-up Word Detection Test
Our wake-up word detection evaluation dataset was recorded by
225 speakers. We select 2 keywords as personalized wake-up
words with length ranging from two to four words. Each key-
word, embedded in a 1-5sec sentence, was recorded 10 times by
each speaker. Two of them were used to enroll as templates and
the rest 8 were used for evaluation. Evaluation positive sam-
ples consisted of utterances which contain recorded keywords
and negative samples did not. Same to [5], there was no cross
speaker test in our experimental setup. For one enrollment key-
word, all the positive and negative samples came from the same
speaker. In total, for each wake-up word, we had 1753 posi-
tive samples and 7200 negative samples from all the speakers.
Modified ROC curve [5] was used to exhibit the KWS perfor-
mance. We also chose miss rate at 0.005 false alarm rate to
quantitatively represent the performance.

4. Results
4.1. LSTM Feature Extractors
Table 2 shows the performance of LSTM feature extractors
trained for different embedding units in Mandarin. We can
clearly see that the miss rate degrades significantly with the in-
crease of embedding units. The miss rate remains at a every

Table 2: Performance of LSTM embedding feature based KWS
for different modeling units in Mandarin.

model miss rate at
0.005 false alarm

Non-tonal Phoneme LSTM Embedding 0.354
Tonal Phoneme LSTM Embedding 0.264

Non-tonal Syllable LSTM Embedding 0.169
Tonal Syllable LSTM Embedding 0.109

Character LSTM Embedding 0.096
Word LSTM Embedding 0.089

Table 3: Performance of S-DTW based KWS

model miss rate at
0.005 false alarm

DNN tonal phoneme posteriors 0.137
DNN non-tonal phoneme posteriors 0.129

LSTM tonal phoneme posteriors 0.148
LSTM non-tonal phoneme posteriors 0.139

high level for tonal/non-tonal phoneme and non-tonal syllable
units. The lowest miss rate (0.089) is achieved by the word
LSTM feature extractor. We believe that the good performance
of word level feature extractor is due to LSTM’s ability to model
long context.

4.2. S-DTW KWS
As shown in Table 3, compared with LSTM embedding feature
extractor based KWS systems (Table 2), S-DTW based KWS
systems show inferior results, no matter either DNN phoneme
posterior or LSTM phoneme posterior feature is used. This con-
clusion is consistent with that in [5], in which LSTM feature
extractor also prevails in English.

4.3. Effects of Window Shifting Size
S-DTW based KWS and LSTM embedding feature extractor
based KWS both need a window shifting along the testing au-
dio stream. Thus we investigate the impacts from different win-
dow shifting size. As shown in Figure 2, with the increase of
the shifting size, the miss rate elevates dramatically. Therefore,
in real applications, we need to choose a small shifting size to
main a reasonable missing rate, at the cost of increasing com-
putation heavily.

4.4. SLN-DTW KWS
Table 4 shows the results of SLN-DTW based KWS systems.
We can see that the SLN-DTW lowers the miss rate to a
new level, as compared with LSTM embedding feature extrac-
tor (Table 2) and S-DTW based KWS (Table 3). Non-tonal
phoneme DNN posterior feature with SLN-DTW achieves the
lowest miss rate of 0.029. Compared with LSTM embedding
feature extractor based KWS, this SLN-DTW system achieves
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Figure 2: Impact of window shifting size for S-DTW and LSTM
embedding feature extractor based KWS.

Table 4: Performance of SLN-DTW based KWS.

model miss rate at
0.005 false alarm

DNN tonal phoneme posteriors 0.035
DNN non-tonal phoneme posteriors 0.029
DNN non-tonal phoneme posteriors (2 enrollments) 0.007
LSTM tonal phoneme posteriors 0.045
LSTM non-tonal phoneme posteriors 0.047

67% relative miss rate reduction. Compared with S-DTW based
KWS, this SLN-DTW system achieves 78% relative miss rate
reduction. We also notice that LSTM-based SLN-DTW cannot
outperform DNN-based SLN-DTW, but LSTM achieves an er-
ror rate at a similar level with DNN. As demonstrated in [10, 5],
using an average keyword template of multiple enrollment en-
tries can improve the performance. Similarly, we follow [10, 5]
to perform an extra experiment on KWS with multiple enroll-
ments. By using 2 enrollment entries for each keyword, results
(in Table 4 ) show that the miss rate reaches 0.007. The ROC
curves of several typical QbyE-KWS systems are shown in Fig-
ure 3.

4.5. Efficiency Test
We empirically compare the runtime efficiency of different
models on a server (CPU:Intel Xeon E5-2643, 96G RAM), and
the real-time ratio (time to process the speech/duration of the
speech) is summarized in Table 5. The ratio is averaged on the
evaluation samples of all keywords. Results show that DNN
phoneme posterior plus SLN-DTW approach has the highest
running efficiency, running faster than the S-DTW approach.
But the speed-up is not salient than expected. This is because
the neural network-based feature extraction takes a substantial
amount of computation time. When we compare LSTM and
DNN, we find that the DNN approaches are much faster than
the LSTM approaches. Comparing the two LSTM approaches,
the word LSTM embedding feature approach runs faster. This is
because the similarity measure is cosine in this approach. Please
note that we do not consider any optimization strategies in the
efficiency test. In real on-device use, some practical optimiza-
tion strategies can be used to further speech-up the computation.

5. Related Work
KWS has been studied for fixed or personalized keyword appli-
cations. The keyword-filler HMM approach [17, 18, 19, 20, 21]
has been a dominating approach for many years. But with the
fast development of deep neural networks, they have been sug-
gested to solve the KWS problem [22, 23, 24]. In [24], a popu-
lar small footprint KWS approach is proposed, where a DNN is
trained to predict keyword targets and a garbage target. The
above HMM and DNN based solutions are only suitable for
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Figure 3: ROC curves for several typical QbyE-KWS systems.

Table 5: Real time rate of different KWS systems (the smaller
the more efficient)

model KWS real time rate
LSTM non-tonal phoneme posteriors SLN-DTW 0.018
DNN non-tonal phoneme posteriors SLN-DTW 0.006
DNN non-tonal phoneme posteriors S-DTW 0.008

Word LSTM embedding Cosine 0.016

fixed keywords.
Another solution that can be considered for personalized

KWS relies on a large vocabulary continuous speech recognizer
(LVCSR). It decodes audio to symbolic representation like a
phoneme/word sequence or a lattice [25, 26, 27, 28, 29, 30] and
text retrieval techniques or symbolic search [31, 11] are used
to detect keywords. If a keyword enrollment stage is involved,
then both keyword and testing audio need to be decoded by the
LVCSR. This KWS solution may be a good one if no limit to the
resources. But LVCSR needs quite a lot of computing resources
and does not fit our on-device applications.

As discussed in Section 1, DTW-based QbyE-KWS is an
appropriate solution for on-device personalized keyword de-
tection [9, 10, 11, 12, 6]. Because the keyword template is
usually much shorter than runtime utterance, strategies like S-
DTW [9] and SLN-DTW [10, 11, 12, 6] are used to solve this
problem. Chen et al. [5] propose an LSTM feature extractor
approach to embed audio segments of varying lengths into a
fixed-dimension representation. Hence the similarity of two se-
quences can be measured directly using a simple distance (e.g.,
cosine), bypassing the time-consuming DTW computation.

6. Conclusion
We have investigated neural network based query-by-example
keyword spotting (QbyE-KWS) approach for personalized
wake-up word detection in Mandarin Chinese. Specially, we
have studied both neural network based features and two differ-
ent DTW algorithms for KWS. Wake-up word detection exper-
iments show that DNN phoneme posterior plus SLN-DTW ap-
proach has achieved the state-of-the-art performance with high-
est runtime efficiency. Compared with other embedding units
like phonemes, syllables and characters, word level LSTM em-
bedding feature shows superior performance. But the LSTM
networks, either used as embedding feature extractor or poste-
rior feature extractor, cannot outperform the feed-forward net-
works. This is probably because LSTMs may need more pa-
rameter tunings and training tricks. As our future work, we will
perform further studies on LSTM-based feature extractors.
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