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Abstract—Adaptability and controllability are the major ad-
vantages of statistical parametric speech synthesis (SPSS) over
unit-selection synthesis. Recently, deep neural networks (DNNs)
have significantly improved the performance of SPSS. However,
current studies are mainly focusing on the training of speaker-
dependent DNNs, which generally requires a significant amount
of data from a single speaker. In this work, we perform a
systematic analysis of the training of multi-speaker average
voice model (AVM), which is the foundation of adaptability
and controllability of a DNN-based speech synthesis system.
Specifically, we employ the i-vector framework to factorise the
speaker specific information, which allows a variety of speakers
to share all the hidden layers. And the speaker identity vector
is augmented with linguistic features in the DNN input. We
systematically analyse the impact of the implementations of i-
vectors and speaker normalisation.

I. INTRODUCTION

Recently, statistical parametric speech synthesis (SPSS)

has attracted significant attentions because of its adaptabil-

ity and controllability to the synthesised voice. By adapt-

ing/controlling the model parameters, voices with different

characteristics can be easily generated. In the last decade,

hidden Markov models (HMMs) were successfully applied to

SPSS, in which the Gaussian mixture model (GMM) was used

to model the observations of hidden states [1], [2]. Although

the GMM-HMM framework can model the relationship be-

tween linguistic features and acoustic parameters, the decision

tree based clustering cannot generalise well for unseen context

and limits the naturalness of synthesised speech [3], [4].

Recent studies have shown that SPSS has been considerably

advanced by deep neural networks (DNN) [3], [5], [6], [7],

[8], [9], [4]. DNN and other neural network models can learn

a direct, layered, non-linear model from linguistic features to

acoustic parameters without decision tree clustering. However,

current studies on SPSS are mainly speaker-dependent: a

significant amount of data from a single speaker is required

to build a stable acoustic model, and sometimes the quality

of training data has a great influence on the naturalness of

synthesised speech.

To explore the adaptability and controllability of SPSS, a

significant amount of work has been done in the HMM-based

framework. In [10], maximum likelihood linear regression

(MLLR) was applied to the speaker adaptation model in

order to transform voice characteristics to the target speaker.

Then the multi-space probability distribution HMM (MSD-

HMM) was used to simultaneously model and adapt excita-

tion and spectral parameters [11]. Average-voice-based speech

synthesis using hidden semi-Markov model (HSMM) also

showed the adaptability of HMMs [12]. In [13], Yamagishi et

al. provided a systematic analysis of HMM-based speaker

adaptation techniques. They also proposed a constrained struc-

tural maximum a posterior linear regression (CSMAPLR)

method for HMM-based adaptation. In [14], a speaker adaptive

system was built, which employed several kinds of effective

adaptation methods such as CSMAPLR+MAP and feature-

space adaptive training. All these studies show promising

adaptability of HMM with a small amount of adaptation data.

Recently, several studies have been conducted to assess the

adaptability and controllability of DNN-based speech synthe-

sis. In [15], Fan et al. proposed a multi-speaker DNN model,

where the same hidden layers were shared among different

speakers while the output layers were composed of speaker-

dependent nodes explaining the target of each speaker. The

hidden layers were further transferred for a new speaker with

limited training data. In this approach, only a few speakers

were considered for the shared DNN model and parallel

data from multiple speakers were assumed in the model

training. They further extended their multi-speaker DNN to

a speaker and language factorization model [16]. Recently,

Wu et al. [17] proposed three DNN-based speaker adaption

methods at different levels: input, hidden layers and output.

Specifically, at the DNN input level, they augmented a low-

dimensional speaker-specific vector (i-vector) with linguistic

features as input to represent speaker identity. An average

voice model (AVM) with augmented i-vector was trained

from multiple speakers. Different from the multi-speaker DNN

model [15], the AVM+i-vector model was trained from a

variety of speakers and the output layer was shared by all

the speakers. At the adaptation phase, the target speaker’s i-

vector was first estimated by using the adaptation data, and

then the i-vector was appended with linguistic features as input

to generate the target speaker’s voice. The advantages of this

approach are obvious: (1) the AVM training does not need

parallelled data from different speakers; (2) to synthesize the

voice of a target speaker, the AVM model does not need to



be re-trained or fine-tuned using the target data. In [18], a

prosodic controlling vector, which is similar to the idea of

i-vectors, was introduced to DNN-based speech synthesis to

control the global prosodic characteristics.

As we know, average voice model (AVM) is the basis and

the key to the success of speaker adaptation. However, to the

best of our knowledge, a systematic analysis of the training

of AVM is still missing. To bridge the gap, we present a

systematic analysis on the training of AVM in this study. We

follow the i-vector framework presented in [17] rather than

that in [15], as the i-vector framework allows us to model a

large number of speaker without assuming parallel data. We

aim to answer the following questions through the analysis:

• How to do normalisation for acoustic features? As the

AVM training involves acoustic features from multiple

speakers, it might be important to know how to effectively

normalise the acoustic features.

• Is i-vector effective to improve the performance of

AVM? I-vector is a low-dimensional vector representing

speaker individuality and has been widely used in speaker

recognition [19]. We expect that with the help of this

speaker identity vector, the speech synthesis performance

might be improved.

• How to extract i-vectors, and how many dimensions

are enough. To make the i-vector more robust and com-

pact, linear discriminant analysis (LDA) [20] is usually

adopted. We are interested in the impacts from different

i-vector dimensions after LDA.

The answers to these questions will help us to understand how

to train a better AVM, and how to maximise the adaptability

and controllability in the future studies of DNN-based speech

synthesis.

II. AVERAGE VOICE MODEL TRAINING

In this work, we follow the i-vector framework proposed

in [17], in which all the speakers share all the DNN layers,

including the output layer. The i-vector, which represents

speaker identity [21], is used to control the network to produce

the speaker’s voice. The framework is presented in Figure 1.

In the framework, an i-vector and a gender code are appended

with the speaker-independent linguistic features as the network

input. The i-vector and gender code are used as speaker-

dependent features to discriminate among different speakers.

We will analyse the impact of acoustic feature normalisation

and the implementation of i-vector to the performance of an

average voice model (AVM).

A. Speaker normalisation

As each speaker has its own characteristics, it is useful

to remove those speaker variations when training an AVM.

In [15], a so-called multi-task learning was applied to give

each speaker a private output layer, and the bottom layers

were shared by all the speakers. However, to maximise the

flexibility and controllability, it is important to share all the

layers for all the speakers. For example, to generate arbitrary
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Fig. 1. The average voice model (AVM) framework used in this work, which
takes i-vector, gender code and linguistic features as system input to predict
vocoder parameters which are also called acoustic features.
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Fig. 2. Variation of the average Mel-Cepstral Coefficients (first 30 coefficients)
from 44 male speakers in the VCTK corpus.

speaker’s voice without his/her training data, it is impossible

to train its private layer.

We propose to do speaker-dependent normalisation, rather

than global normalisation. Figure 2 presents the cepstral means

of 44 male speakers in the VCTK corpus, as well as the

global mean of those speakers. It demonstrates that doing

global mean-variance normalisation cannot catch the speaker

variations when training an AVM.

B. I-vector extraction

I-vector is a low-dimensional representation of speaker

identity, which is realised by projecting a speaker supervector

(i.e. GMM supervector) into a low-dimensional subspace via

factor analysis technique [21]. A speaker-dependent GMM

supervector can be modeled as,

s = m+Ti, (1)



where s is the speaker supervector, m is the mean supervector

of speaker-independent universal background model (UBM),

T is the total variability matrix representing speaker space.

The speaker space is also called total variability subspace

(TVS). i is the speaker identity vector, i.e., i-vector, which

is assumed to follow a standard normal distribution.

In practice, the total variability matrix T and the UBM

model are gender-dependent, and maximum a posterior is

used to estimate the speaker supervector from the speaker-

independent UBM model.

C. Linear discriminant analysis

To make the i-vector more robust and compact, linear

discriminant analysis (LDA) is usually adopted. LDA is a dis-

criminant analysis method, which finds the best identification

vector space to represent the high-dimensional samples, and

tends to make samples have the minimum inter-class variance

and the maximum intra-class variance [22]. Suppose there are

N different classes with mean µi, then the scatter between

class variability can be defined as

∑
b
=

1

N

N∑

i

(µi − µ)(µi − µ)T (2)

where µ is the mean of all classes. Assuming all classes have

the same covariance, the Fisher criterion for multi-class LDA

can be maximized in the form [22], [23]:

S =
σ2

between

σ2

within

=
V T

∑
b
V

V T
∑

V
(3)

where σ defines the variance between the classes and within

classes, S is the separation between these two variances, and∑
is the covariance of all samples. So the main purpose of

LDA is to find a suitable V that maximizes S. Since it is

a Rayleigh quotient, when V is the generalized eigenvectors

of
∑

−1
∑

b
, S will be equal to the corresponding eigen-

value [23].

Given the generated i-vectors and their corresponding

speaker labels, we do LDA under the fisher criterion with

the assumption that each speaker has the same covariance. In

this way, we take the transformation matrix V to reduce the

dimension of i-vector using different number of components.

III. EXPERIMENTS

A. Experimental setups

In the experiments, the VCTK corpus1 was used, which con-

tains speech data from 103 speakers, including 44 male and 59

female speakers. Each speaker has around 400 sentences, and

in total 41,294 sentences. We took 40,294 randomly selected

sentences for AVM training, 500 sentences as development

set and another 500 sentences as testing set. The sampling

rate of speech files was 48 kHz. the STRAIGHT vocoder [24]

was used to extract 60-dimensional Mel-Cepstral Coefficients

(MCCs), 25-dimensional band aperiodicities(BAPs) and F0 in

log-scale at a 5-ms step.

1http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html

TABLE I
Comparison between global and speaker-dependent (SD) normalisation with

and without i-vectors in AVM training. MCD = Mel-Cepstral Distortions.

BAP is the distortion for band aperiodiciaties. RMSE = Root Mean Squared

Error. V/UV is the percentage of voicing/unvoicing decision error.

Methods MCD (dB) BAP (dB) F0 RMSE (Hz) V/UV (%)

global (w/o i-vec) 3.254 4.375 47.152 14.842

global (with i-vec) 2.743 4.069 17.540 12.042

SD (w/o i-vec) 3.070 4.221 17.577 14.166

SD (with i-vec) 2.754 4.078 16.765 12.182

For the DNN AVM model, there were 6 feed-forward

hidden layers, each of which had 1,536 hidden units. The

hyper-parameters, such as learning rate and momentum, were

tuned on the development set. The input features to the

DNN included three parts: i-vector, gender code and speaker-

independent linguistic features. The linguistic features were

extracted by Festival [25], and they were converted to 501-

dimensional binary and/or numerical features, similar to

that in [8]. The output acoustic parameters included 60-

dimensional MCCs, 25-dimensional BAPs and linearly in-

terpolated F0 in log-scale with their delta, delta-delta fea-

tures, plused a voicing/unvoicing (V/UV) flag, totally 259

dimensions. The input features were normalised to a fixed

range [0.01 0.99], and the output acoustic parameters were

normalised by either speaker-dependent mean-variance nor-

malisation (MVN) or speaker-independent global MVN. At

the generation time, maximum likelihood parameter generation

(MLPG) and spectral enhancement to MCCs were applied to

improve the naturalness of synthesised speech. The speech

waveforms were reconstructed by the STRAIGHT vocoder. In

practice, Merlin [26] was used to train the AVM.

For i-vector extraction, WSJ0, WSJ0, WSJ-CAM and

VCTK databases were used to train UBM, TVS and LDA

models. All the databases were downsampled to 16 kHz, as

i-vectors were used as the input to the DNN model, which is

independent from the sampling rate for speech synthesis, and

in practice it is much easier to obtain 16 kHz data. I-vectors

were extracted from gender-dependent models. In the gender-

dependent GMM-UBM training, we extracted 19-dimensional

Mel-Frequency Cepstral Coefficients (MFCCs) and log-energy

with corresponding delta and delta-delta coefficients, and the

size of window is 25ms with a 10ms shift. Voice activity detec-

tion (VAD) was performed to remove the silence frames. A set

of 512 Gaussian components were used, and we calculated the

sufficient statistics from UBM for every 10 sentences, which

were used to extract one 400-dimensional i-vector. All the

individual i-vectors of a target speaker were averaged to get

a single i-vector to represent each speaker. In this study, the

MSR identity toolbox [27] was used to extract i-vectors.

B. Objective evaluation

We first analysed the impact of speaker-dependent (SD)

normalisation. Objective results with and without i-vectors

are presented in Table I. It is observed that without i-vectors

in the AVM training, SD normalisation achieves considerably

lower distortions than global normalisation for all the objective
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Fig. 3. The 3D distribution of 16-dimensional i-vectors. The t-SNE tool [28] is used for visualization. Each point in the space represents an average i-vector
extracted from a group of sentences from the speaker. It is seen that i-vectors from the same speaker are generally in the same cluster, and there are clear
discrimination across speakers.

measures, specially F0, as global normalisation cannot tell

speaker variations. However, when i-vectors are included in

the AVM training, global and SD normalisation methods result

in similar objective results. It might because i-vectors have

considered speaker variations already.

We then analysed the impact of i-vector extractions. We

first extracted 400-dimensional i-vectors and then applied LDA

to obtain low-dimensional i-vectors. The dimensionality was

varied from 2 to 128 to evaluate its effects on the AVM

performance. To visually show the relations of i-vectors across

speakers, we used t-SNE [28] to visualise 16-dimensional i-

vectors from male speakers in the AVM training data, as

presented in Fig. 3. Each data point within a speaker’s “cloud”

is an average i-vector extracted from a group of sentences from

the speaker. It is seen that i-vectors from the same speaker are

generally in the same “cloud” or cluster, and there are clear

discrimination across speakers. The distance across i-vectors

might reflect the speaker distance or similarity and the AVM

with i-vectors might be able to learn these relationships.

Objective results with varied dimensions of i-vectors are

presented in Table II. It is observed that even with a 2-

dimensional i-vector, we achieved 4.7% relative MCD degra-

dation and 7.1% relative V/UV error degradation, in compar-

ison to that without i-vectors in the AVM training. As the di-

mension of i-vectors increases, there is a considerable drop in

all distortion measures from 2-dimensional to 16-dimensional

i-vectors, and the distortions converge when the dimension of

i-vectors is 16 or 32. It suggests that 16-dimensional or 32-

TABLE II
The impact of i-vector dimensions to the performance of AVMs.

Dimension MCD (dB) BAP (dB) F0 RMSE (Hz) V/UV (%)

w/o i-vector 3.070 4.221 17.577 14.166

2-D 2.927 4.167 17.352 13.165

4-D 2.812 4.107 16.876 12.486

8-D 2.771 4.078 16.803 12.252

16-D 2.754 4.078 16.765 12.182

32-D 2.745 4.071 16.848 12.142

64-D 2.745 4.070 16.979 12.161

128-D 2.742 4.067 16.909 12.058

dimensional i-vectors are enough to capture speaker identity

information for speech synthesis which generally uses clean

speech. This is different from that in speaker verification which

generally uses 200-dimensional i-vectors or even higher.

In general, objective results confirm the important of

speaker-dependent normalisation and the use of i-vectors for

AVM training.

C. Subjective evaluation

Although objective measures provide a good way to tune

AVMs, they might not always correlate with human percep-

tion. To this end, we performed subjective evaluation in terms

of naturalness and speaker similarity to assess the performance

of AVMs.

AB preference tests were conducted for both naturalness and

similarity. For the listening test, 20 sentences were randomly

selected from the testing data, and 25 listeners participated in

each test. In the naturalness test, two samples were presented
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to the listeners, and the listeners were asked to decided

which one was more natural. If they could not hear the

difference, they were guided to choose the “neutral” option.

As for the similarity test, a reference sample from each target

speaker’s was first presented, and then two samples from two

different AVM models were presented to the listeners. They

were asked to choose the one which sounded more like the

reference sample, or choose the “neutral” option if there was

no difference.

We first analysed the impact of speaker normalisation to the

performance of AVM. The preference results are presented

in Figure 4. Reviewing Table I, the objective results can

be considerably reduced by introducing i-vectors in AVM

training. Hence, we used AVMs with 16-dimensional i-vector

as input in this test. It is observed that even though the

normalisation methods do not affect the naturalness, speaker-

dependent normalisation achieves relatively higher similarity

scores than the global normalisation which does not take

speaker variations into account. The results suggest that

speaker-dependent normalisation can improve the performance

of AVM.

We then analysed the impact of the dimensionality of i-

vectors to the performance of AVM. As suggested by the

objective results, 16-dimensional i-vectors can achieve al-

most the same objective results as that by 128-dimensional

i-vectors. Hence, we only performed subjective evaluation

between AVMs that used 16-dimensional and 128-dimensional

i-vectors, and employed speaker-dependent normalisation. The

preference results are shown in Figure 5. It demonstrates that

16-dimensional i-vectors achieve slightly higher naturalness

and similarity scores than that of 128-dimensional i-vectors,

but the differences are not significant. We note that since

the dimensionality of the linguistic features is only 501, 128-

dimensional i-vectors might be slightly redundant and might

degrade the performance of AVMs.

After that, we analysed the effectiveness of i-vectors to

the performance improvement of AVMs. We compared AVMs
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without i-vectors and that with 16-dimensional i-vectors. The

preference results are presented in Figure 6. It is observed that

by introducing i-vectors in the AVM training, both naturalness

and similarity are signficantly increased, and the subjective

results are consistent with the objective results.

IV. CONCLUSIONS

In this work, we performed a systematic analysis of the

training of multi-speaker average voice model for DNN-based

speech synthesis. We have the following findings:

• Speaker-dependent normalisation on acoustic features

achieves better performance than global normalisation

both objectively and subjectively.

• I-vector is an effective technique to improve the per-

formance of AVMs, in both naturalness and speaker

similarity.

• Even though in speaker verification, i-vectors at a higher

dimension is generally used, in our experiments, we

found that 16-dimensional i-vectors can already capture

speaker identity information for the speech synthesis task.

As i-vectors are used at the input level, it is flexible to combine

with other speaker adaptive training (SAT) techniques. In



future work, we plan to investigate the combination of i-

vectors with other techniques, such as learning hidden unit

contributions (LHUC). We will also investigate the impact of

selection of speakers for AVM training.
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