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ABSTRACT

This paper describes the system developed by the NNI team
for the Query-by-Example Search on Speech Task (QUESST)
in the MediaEval 2015 evaluation. Our submitted system
mainly used bottleneck features/stacked bottleneck features
(BNF/SBNF) trained from various resources. We investi-
gated noise robustness techniques to deal with the noisy da-
ta of this year. The submitted system obtained the actual
normalized cross entropy (actCnxe) of 0.761 and the actu-
al Term Weighted Value (act TWV) of 0.270 on all types of
queries of the evaluation data.

1. INTRODUCTION

This year’s data is more challenging in terms of acoustic
and noise conditions [1]. Noise robustness techniques, in-
cluding adding noise to the training data of tokenizers and a
speech enhancement method, were investigated to deal with
the noisy data. Our submitted system involves dynamic
time warping (DTW) and symbolic search (SS) based ap-
proaches as last year. This year, the final submitted system
was obtained by fusing 66 systems from our 3 groups, in-
cluding 15 DTW systems (selected from 26 original systems
using FoCal toolkit [2]) from NWPU, 39 DTW systems from
I’R, and 8 DTW and 4 SS systems from NTU. Moreover,
various voice activity detection (VAD) methods were used
in the DTW systems.

2. ADDING NOISE TO TRAINING DATA

To reduce the mismatch problem between the training da-
ta of tokenizers and this year’s development and test data,
noise was added to the training data. We used two meth-
ods to obtain two sets of noise from the development data.
The method used to obtain the first set of noise (noisel) is
summarized as follows [3, 4, 5]:

e Perform voice/unvoice detection on the development
data and obtain segments of noise from the utterance.
e Estimate the noise power spectrum of each utterance
and generate minimum phase signal according to the
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power spectrum of each sentence and design the mini-
mum phase filter.

e Use EM algorithm to estimate the parameters of the
noise amplitude distribution (empirically select Gaus-
sian distribution and set the number of Gaussian mix-
tures to 2).

e Generate a random white noise with the target noise
amplitude distribution.

e Filter the random white noise using the minimum phase
filter.

The second set of noise (noise2) was also estimated from
the development data by using a method in [6]. The time
domain noise was reconstructed by inverse short-time Fouri-
er transform of the estimated instantaneous noise spectrum.
Please refer to [7, 8] for details.

When noise was added, we had to ensure that the signal-
to-noise ratio (SNR) distribution of the resultant training
data was similar to that of this year’s development data.
Moreover, since not all the utterances in this year were high-
ly noisy or reverberated, we only added noise to randomly
selected 50 percent of training data.

3. SPEECH ENHANCEMENT

A Wiener filter [9] was used to reduce the noise in the data.
The noise was reduced in the time domain and the enhanced
data was used for VAD and feature extraction. Initial results
(detailed in section 8) showed that the enhanced data led to
better DTW performance for some tokenizers.

4. VOICE ACTIVITY DETECTION

For exact matching DTW systems, we used two voice ac-
tivity detectors (VADs), including a frequency band energy
based VAD [10] (VAD1) and a statistical model based VAD
[11] (VAD2), because we found that they performed the best
in different types of queries. For phoneme-sequence based
approximate matching DTW systems (detailed in section 5)
with phoneme posterior features, we used their single-best
decoding hypotheses to perform VAD and obtain phoneme
boundary information. For a phoneme-sequence approxi-
mate matching DTW systems with SBNF, we simply bor-
rowed the single-best decoding hypothesis of a phoneme rec-
ognizer to perform VAD and obtained the phoneme bound-
ary information.

S. DTW SEARCH



Exact matching and approximate matching DTW systems
were developed to deal with different types of queries. An
exact matching system matched each query with a subse-
quence of a test utterance using DTW [12, 13]. It found a
path on the cosine distance matrix of the speech feature of
the query and the test utterance. The system output the
similarity score between the query and the matched subse-
quence of the test utterance.

We used two different kinds of approximate matching DTW
systems in total, including fixed-window [12, 14] and phoneme-
sequence [15] approximate matching systems, to deal with
type 2 and type 3 queries. In fixed-window approximate
matching systems, when the window was shifted, the cor-
responding segment of the query was matched with a test
utterance. The highest similarity score which corresponds to
a query segment and the test utterance was used as the score
of the query-utterance pair of the system. The window sizes
were set between 70 and 90 frames and the window shifts
were set between 5 and 10 frames. In phoneme-sequence
approximate matching systems, the size of the window was
determined by the phoneme boundary information derived
from phoneme recognizers. The window size was set to 8
phonemes, as it provided best results on the development
data.

6. SYMBOLIC SEARCH

Weighted finite state transducer (WFST) based symbol-
ic search systems were used as last year [12]. Phoneme-
sequence approximate matching [14] was used to faciliate
type 2 and type 3 queries, and to reduce the miss rate. A
sequence length of 6 phonemes was chosen, as it provided
best matching results on the development data.

7. TOKENIZERS AND SYSTEMS

Spectral features, phoneme-state posterior features and
BNF/SBNF were used in our DTW systems.

NWPU extracted truncated PLP [16] (al), posterior fea-
tures from 3 BUT phoneme recognizers [17] (Czech, Hun-
garian and Russian; a2-a4), 3 sets of SBNF (1 being mono-
phone state using original training data and 2 being triphone
state with noisel and noise2 added in training data respec-
tively; a5-a7) trained from the English Switchboard corpus
(SWBD), and 1 set of triphone state SBNF (a8) trained
from the SEAME corpus [18].

I?R extracted 4 sets of BNF (bl-b4) and 4 sets of SBN-
F (b5-b8) trained from four LDC corpora (SWBD, Fish-
er Spanish, HKUST Mandarin and CallHome Egyptian),
and 5 sets of BNF (b9-b13) (4 language-dependent and one
language-independent [19]) trained from 4 development lan-
guages in the OpenKWS evaluation [20].

NTU extracted 3 sets of BNF (cl-c3) trained (1 being
triphone state with original training data and 2 being tri-
phone state with Noisex92 [21] added in training data once
and twice respectively) from SWBD, and 1 set of BNF (c4)
trained from the 6 development languages in the OpenKWS
evaluation.

NWPU’s 26 DTW systems consisted of 9 exact match-
ing systems (using al-a8, c4) and 4 phoneme-sequence ap-
proximate matching systems (using a2-a4, a6). The rest 13
systems were exactly the same as the previous 13 systems
except the enhanced data was used in VAD and feature ex-
traction.

Table 1: Performance gain of an exact matching DTW sys-
tem on the development set when different data (s1: original
SWBD data; s2: noisel is added; s3: noise2 is added) is used
to train a tokenizer. The tokenizer is used to extract triphone
state SBNF. Result Form: minCnxe, maxTWV

All T1 T2 T3
sl 0.891,0.111 0.762,0.227 0.934,0.024 0.918,0.093
52 0.875,0.133 0.733,0.258 0.925,0.041 0.901,0.101
s3 0.877,0.132 0.735,0.270  0.923,0.038 0.907,0.095

Table 2: Performance on different types of queries in devel-

opment and evaluation datasets.
dev eval
All(T1, T2, T3) All(T1, T2, T3)

actCnxe 0.773(0.629,0.813,0.829)  0.761(0.609,0.854,0.783)
minCnxe 0.757(0.601,0.793,0.810)  0.747(0.577,0.831,0.769)
actTWV 0.286(0.439,0.203,0.200)  0.270(0.436,0.189,0.203)
maxTWV 0.286(0.447,0.208,0.205)  0.274(0.444,0.194,0.215)

I?’R’s 39 DTW systems consisted of 13 exact matching
systems (using bl-b13) and 13 fixed-window approximate
matching systems (using b1-b13) with VAD1, and 13 exact
matching systems (using b1-b13) with VAD2.

NTU’s 12 systems consisted of 4 exact matching (using c1-
c4) and 4 fixed-window approximate matching (using c1-c4)
DTW systems with VAD1, and 4 phoneme-sequence approx-
imate matching SS systems with 4 acoustic models trained
from SWBD and a Malay speech corpus [22].

The scores of all systems in each group were fused to a
single system internally and the 3 resultant systems were
further fused to obtain the final submitted system. In each
fusion step, scores were first normalized to zero mean and
unit variance, and then fused with the FoCal toolkit [2].

8. RESULTS AND CONCLUSION

Table 1 shows the performance gain of an exact matching
DTW system on the development set when noisel and noise2
were added to the SWBD data for training triphone SBNF.
The results show that adding the noise to the training data
gives 1.8% relative improvement on all query types and 3.8%
relative improvement on type 1 queries in minCnxe.

When the enhanced data was used to extract SWBD mono-
phone SBNF, BUT Czech and Hungarian phoneme-state
posterior features for our DTW systems, we observed rela-
tive improvements of 1.9-3.1% on all query types and relative
improvements of 2.7-6.3% on type 1 queries in minCnxe.

Table 2 shows the performance of our final submitted sys-
tem on this year’s data. In the intra-group fusion, each
group experienced performance gains by fusing exact match-
ing and approximate matching systems, and fusing sytems
using different speech preprocessing techniques and different
tokenizers. Compared with our single best exact matching
DTW system (s2 in table 1), system fusion brings around
13.5% relative improvement in minCnxe on the development
data (all query types).

The peak memory usage (PMU) of all DTW systems is
1.45GB when 1 set of 30 dimensional SBNF are loaded, and
the searching speed factor (SSF) is around 0.0044 in each
DTW system. The PMU of all SS systems is 45GB, and the
SSF is around 0.0012 in each SS system.

We adopted noise robustness techniques to deal with the
noise condition of data, which led to better search perfor-
mance. We also experienced performance gains by fusing
systems using different tokenizers, different VADs and dif-
ferent search algorithms.
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