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Abstract
Non-negative matrix factorization (NMF) aims at finding non-
negative representations of nonnegative data. Among differen-
t NMF algorithms, alternating direction method of multipliers
(ADMM) is a popular one with superior performance. Howev-
er, we find that ADMM shows instability and inferior perfor-
mance on real-world data like speech signals. In this paper, to
solve this problem, we develop a class of advanced regularized
ADMM algorithms for NMF. Efficient and robust learning rules
are achieved by incorporating l1-norm and the Frobenius norm
regularization. The prior information of Laplacian distribution
of data is used to solve the problem with a unique solution. We
evaluate this class of ADMM algorithms using both synthetic
and real speech signals for a source separation task at differ-
ent cost functions, i.e., Euclidean distance (EUD), Kullback-
Leibler (KL) divergence and Itakura-Saito (IS) divergence. Re-
sults demonstrate that the proposed algorithms converge faster
and yield more stable and accurate results than the original AD-
MM algorithm.
Index Terms: Regularized non-negative matrix factorization,
Alternating direction method of multipliers, Beta-divergence,
Source separation

1. Introduction
In the real-world, it is necessary and desirable to perform both
non-negative and sparse decompositions of data such that the
underlying components have a physical interpretation. NMF
has been found to be a useful decomposition for multivariate
data. In particular, NMF has been widely used in audio sig-
nal processing such as polyphonic music transcription [1] and
source separation [2].

Given a data matrix V ∈ RM×N with non-negative entries,
NMF aims at finding two low-rank matrices W ∈ RM×K and
H ∈ RN×K(K < M,N) such that

(W ∗, H∗) = minimize
W≥0,H≥0

D(V |WHT ), (1)

where D(·) represents some measure of divergence. The com-
monly used measures in NMF are the special cases of beta-
divergence [3]: EUD [4, 5, 6, 7, 8], KL-divergence [4, 9] and
IS-divergence [10, 11]. Different cost functions can produce
significantly different results [12]. In general, the problem is
bi-convex in W and H separately, so many algorithms adopt an
alternating minimization approach to find the locally optimal
solution.

The most popular approach is a simple multiplicative up-
date method proposed by Lee and Seung [4], but the conver-

gence of the algorithm to a stationary point has not yet been
proved [13]. Under the Euclidean NMF framework, numer-
ous algorithms have been proposed, such as the block princi-
pal pivoting (BPP) method [7], the hierarchical alternating least
squares (HALS) method [8] and the basic gradient projection
(GPSR) method [6]. These algorithms have a common property
that every produced limit point is a stationary point [7]. Based
on KL-divergence and IS-divergence, several algorithms have
also been proposed for specific applications. For example, Vir-
tanen et al. considered gamma chains for regularization of KL-
NMF [14], while Févotte et al. considered the inverse-gamma
and gamma Markov chain priors for IS-NMF [11]. All of these
mentioned algorithms rely on special properties of EUD, KL-
divergence and IS-divergence and are not universal for different
applications.

To extend the NMF algorithm to diverse applications us-
ing different cost functions, recently, Sun et al [15] developed
an ADMM based universal update framework which features
faster convergence and better accuracy than the state-of-the-art
algorithms on synthetic data sets. However, we find that for re-
al non-negative data, e.g., speech spectrum, ADMM results in
lower performance than our expectation in terms of stability and
accuracy.

In this paper, in order to guarantee the stability of ADM-
M and the accuracy of NMF, we propose a novel ADMM up-
date framework for NMF. Specifically, we develop a class of
advanced regularized ADMM algorithms for NMF to achieve
efficient and robust learning (update) rules by incorporating l1-
norm and the Frobenius-norm regularization. The l1-norm pro-
motes sparse solutions which can guarantee a uniqueness of so-
lution for NMF [16]. On the other hand, from the Bayesian
perspective, the l1-norm can improve the accuracy of the algo-
rithm for NMF if the priori information of a variable follows a
Laplacian distribution [16], which coincides with the distribu-
tion of some real data, e.g., speech signal [17]. The Frobenius-
norm can be used to stabilize the algorithm. As a special case of
Tikhonov regularization [18], it can be viewed as a regulariza-
tion technique to overcome the ill-condition problem. The pro-
posed framework turns the updates of variablesW andH into a
nonnegativity-constrained least squares (NNLS) problem, then
numerous Euclidean NMF algorithms can be adopted to update
W and H . Instead of solving the close-form solution, the new
update rules can make the solution much more stable and accel-
erate the convergence speed.

In this study, we adopt the state-of-the-art Euclidean NMF
algorithms including the BPP method [7], the HALS method [8]
and the GPSR method [6]. We evaluate this class of ad-
vanced ADMM algorithms using synthetic data and real non-



negative data. We compare the performance of ADMM algo-
rithms on source separation using EUD, KL-divergence and IS-
divergence as cost functions. Experimental results show that
the proposed algorithms have fast convergence and yield more
stable and accurate results than the original ADMM algorithm.

2. Conventional ADMM for NMF
We note that NMF with different divergences are used in differ-
ent applications. In order to apply ADMM algorithm to various
applications, Sun and Févotte [15] developed an ADMM-based
update framework to extend the NMF problem to β-divergence.
They proposed to split divergence with dictionary and activation
which makes optimization simpler and much more universal for
different divergences than the existing algorithms.

2.1. Non-negative matrix factorization

In the approach proposed by Sun [15], the NMF can be formu-
lated as follows

minimize Dβ(V |X)

subject to X =WHT .

W =W+, H = H+

W+ ≥ 0, H+ ≥ 0,

(2)

where Dβ(V |X) is considered as some measure of β-
divergence between V and X . W and H are the dictionary
matrix and activation matrix, respectively. This approach in-
troduces new variables W+ and H+ as the nonnegative con-
strains. A new variable X splits the divergence with WHT

which makes optimization problem simpler and also more u-
niversal for different divergences. The augmented Lagrangian
corresponding to Eq.(2) is as follows.

Lρ(X,W,H,W+, H+, αX , αW , αH) =

Dβ(V |X) + 〈αX , X −WHT 〉+ ρ

2

∥∥∥X −WHT
∥∥∥2
F

+ 〈αW ,W −W+〉+
ρ

2
‖W −W+‖2F

+ 〈αH , H −H+〉+
ρ

2
‖H −H+‖2F .

(3)

The αX , αW , αH are three dual variables. (W,H,X) and
(W+, H+) are five primal variables. ρ is dual step size.

2.2. Alternating optimization

In the approach proposed by Sun [15], the updates alternately
optimize Lρ with respect to five primal variables, followed by
gradient ascent in each of the three dual variables. In particular,
the updates ofW andH rely on the differentiability ofLρ onW
and H . We can adopt conventional method of solving extreme
value to set the first derivative equal to zero. The root formula
and Cardan formula are used to updateX , which corresponds to
β=1 and β=0, respectively. The updates of W+ and H+ adopt
methods based on proximity operator [15, 19]. The detailed
update rules can be found in [15].

3. A class of advanced regularized ADMM
for NMF

3.1. Regularized NMF model

We incorporate regularization including l1-norm and the
Frobenius-norm in the universal ADMM framework. l1-norm

can promote a uniqueness of solution with sparse constrains.
Moreover, the incorporation of the l1-norm is equal to bring-
ing in a priori information that the distribution of data is Lapla-
cian [16]. This priori coincides with the distribution of some re-
al data, e.g., speech signal [17]. This can improve the accuracy
of the algorithm. The Frobenius-norm can be used to stabilize
the algorithm. It can be viewed as a special case of Tikhonov
regularization.

The incorporation of l1-norm can improve the accuracy and
sparsity. Meanwhile, the Frobenius-norm can improve the sta-
bility. However, the instability is still a problem while solving
the close-form solution. Therefore, we propose a novel ADM-
M algorithm framework for NMF which turns the updates of
variable W and H into a non-negative least squares (NNLS)
problem. Under this framework, the updating value of W or H
is non-negative. Therefore, W+ and H+ can be discarded. If
we consider the l1-norm of H and the Frobenius-norm of W 1,
the NMF formulation is proposed as follows

minimize
W≥0,H≥0

Dβ(V |X) + λH,l1 ‖H‖
2
1 + λW,F ‖W‖2F

subject to X =WHT ,
(4)

where the scale parameters λH,l1 or λW,F are used to control
the strength of regularization. X is for the same purpose as in
Eq.(2). The augmented Lagrangian for Eq.(4) is as follows

Lρ(X,W,H,αX) = Dβ(V |X) + 〈αX , X −WHT 〉

+
ρ

2

∥∥∥X −WHT
∥∥∥2
F

+ λH,l1 ‖H‖
2
1 + λW,F ‖W‖2F .

(5)

The proposed ADMM algorithm consists of three primal vari-
ables (X,W,H) and one dual variable αX . It simplifies the
form of NMF more than the form in Eq.(2) proposed by Sun et
al [15].

3.2. Alternating optimization

According to the ADMM algorithm, Eq.(5) can be solved by
the following iterations

W k+1 := argmin
W

Lρ(X
k,W,Hk, αkX) = minLρ,W (6a)

Hk+1 := argmin
H

Lρ(X
k,W k+1, H, αkX) = minLρ,H (6b)

Xk+1 := argmin
X

Lρ(X,W
k+1, Hk+1, αkX) = minLρ,X

(6c)

αk+1
X := αkX + ρ(Xk+1 −W k+1(HT )k+1). (6d)

Applying (5) to (6c), the minimization form on X is the same
with that proposed by Sun [15]. Similarly, we adopt the same
update rules as the approach proposed by Sun. For the update
rules onW andH , we firstly propose a new optimization frame-
work which combines the scale form of ADMM with the prop-
erties of regularization item. Under this framework, the mini-
mization problem on W or H becomes an NNLS problem. We
adopt the state-of-the-art Euclidean NMF algorithms including
BPP [7], HALS [8] and GPSR [6] to update W and H .

1The Frobenius-norm ofH and the l1-norm ofW can also be adopt-
ed, but here we leave out them for simplify of form. If they are consid-
ered, the scale parameter are λH,F and λW,l1 , respectively.



3.2.1. Proposed optimization framework

Update on W : Applying (5) to (6a) while considering the in-
corporation of the Frobenius-norm , the minimization problem
is stated as

Lρ,W = 〈αX , X−WHT 〉+ρ
2

∥∥∥X −WHT
∥∥∥2
F
+λW,F ‖W‖2F .

The scaled form of Lρ,W is

Lρ,W =
ρ

2

∥∥∥X −WHT + µ
∥∥∥2
F
+λW,F ‖W‖2F + const, (7)

where µ = 1
ρ
αX . Since const is a constant value which has

no effect on the minimization problem, the above form can be
rewritten as

Lρ,W =
ρ

2

∥∥∥HWT − (X + µ)T
∥∥∥2
F
+ λW,F

∥∥∥WT
∥∥∥2
F
. (8)

According to properties of Frobenius-norm, Eq.(8) can be
rewritten as follows

Lρ,W =

∥∥∥∥(√ρ/2H√
λW,FEK

)
WT −

(
(
√
ρ/2)(X+µ)T

0K×M

)∥∥∥∥2
F

, (9)

where EK is a K ×K identity matrix and 0K×M is a K ×M
zero matrix.
Update on H: Applying (5) to (6b) while considering the l1-
norm, the minimization problem becomes

Lρ,H = 〈αX , X−WHT 〉+ρ
2

∥∥∥X −WHT
∥∥∥2
F
+λH,l1 ‖H‖

2
1 ,

where we adopt squares of the l1-norm of the columns of H as
‖H‖21, i.e.,

‖H‖21 =

N∑
n=1

‖hn.‖21 ,

where hn. ∈ R1×K is a row of H . According to the same
manner of Eq.7 and Eq.8, the Lρ,H is as follows

Lρ,H =
ρ

2

∥∥∥WHT − (X + µ)
∥∥∥2
F
+ λH,l1

N∑
n=1

‖hn.‖21 . (10)

Then according to the properties of l1-norm, Lρ,H can be
rewritten as

Lρ,H =

∥∥∥∥(√ρ/2W√
λH,l1

11×K

)
HT −

(
(
√
ρ/2)(X+µ)

01×N

)∥∥∥∥2
F

, (11)

where 11×K is a row vector containing only ones.

3.2.2. Euclidean NMF Optimization

If we can guarantee the non-negativity of X + µ in Eq.(9) and
Eq.(11), the minimization of Eq.(9) and Eq.(11) can be viewed
as a Euclidean NMF problem. X + µ can be rewritten as

X + µ = X +
1

ρ
αX , (12)

where X is the estimation of V and is non-negative, and the
sign of αX is uncertain. Therefore, our algorithm is to adapt
the step size ρ to guarantee the non-negativity of X + µ. In
particular, we firstly find the index of negative value in αX , and
extract the value in X according to the index. Then, we add the
corresponding value according to Eq.(12) and set each equation

equal to zero. Finally, we select the maximal value of ρ as the
current value. When the value of ρ is settled, we can apply the
Euclidean NMF algorithms in the proposed framework.

In this study, we adopt the Euclidean NMF algorithm-
s including BPP, HALS and GPSR. The BPP algorithm is an
active-set-like method and allows exchanges of multiple vari-
ables between working sets. On the other hand, when W or
H is not necessarily full column rank, the BPP algorithm may
break down. However, the regularization item especially for
the Frobenius-norm can be adopted to remedy this problem [7].
The HALS algorithm minimizes a set of local cost functions
with the same global minima. It allows to formulate a very ba-
sic subproblem that can be solved in a closed form. In practice,
a zero column could occur in W or H during the HALS algo-
rithm. Typically a small number ε ≈ 1e−16 is used to take place
zero. Due to this modification, the result of HALS is not sparse.
In the same manner as BPP, we incorporate Frobenius-norm in
the formulation which can solve this problem [20]. The GP-
SR algorithm searches from each iterate W k or Hk along the
negative gradient of D(W k) or D(Hk) and projects onto the
non-negative orthant. Step length is chosen by a back-tracking
line search to satisfy Armijo’s rule. Compared with the project-
ed method [5], GPSR uses an initial guess for step length. This
yields the exact minimizer of D along this direction and also
confines the step length to an interval which protects against the
step length too small or too large. In this paper, the original
ADMM algorithm is named as ADMM ORI and the proposed
algorithms are named as ADMM BPP, ADMM HALS and AD-
MM GPSR, respectively.

4. Experimental Evaluations
We evaluate the proposed algorithms, i.e., ADMM BPP, ADM-
M HALS and ADMM GPSR using both synthetic and real data
sets.

We firstly evaluate ADMM ORI and the proposed algo-
rithms with synthetic data considering KL-divergence as a cost
function and setting ρ = 1. The synthetic data V is construct-
ed as V = W ∗ H where the initial dictionary matrix W and
the activation matrix H are generated as the absolute values of
Gaussian noise 2, and M = 513,K = 25 and N = 185. For
the proposed algorithms, we set λH,l1 = 0.01, λH,F = 0.01,
λW,l1 = 0 and λW,F = 0.01. As shown in Fig 1, for syn-
thetic data, the proposed algorithms almost have same accuracy
and convergence speed with ADMM ORI, especially for AD-
MM BPP. On the other hand, compared with ADMM ORI, the
proposed algorithms are much more stable. We also compare
the performance of ADMM ORI and the proposed algorithms
using real spectrum data, taking KL as a cost function and an
setting ρ = 0.5. As shown in Fig.2, ADMM ORI results in
instable and low-accuracy solution. In contrast, the proposed
algorithms significantly outperform the ADMM ORI by a large
margin in terms of stability and accuracy. In particular, ADM-
M BPP and ADMM GPSR possess a faster convergence speed
and achieve better accuracy. Compared with ADMM GPSR,
ADMM BPP and ADMM HALS are much more efficient.

We then compare the proposed algorithms with the ADM-
M ORI on source separation using EUD, KL-divergence and
IS-divergence as cost functions. We adopt a general source sep-
aration pipeline using NMF [2]. We use the signal-to-distortion
(SDR) ratio as the evaluation criterion [21]. The same initial-
ization is adopted for all of the ADMM algorithms. We set

2In MATLAB notation: V=abs(randn(M,K))*abs(randn(K,N))



Table 1: Average SDR for different ADMM algorithms. The last column is the average SDR calculated on all 8 different noises.
ALGORITHMS destroyerengine f16 factory1 factory2 m109 pink volvo white Average
ADMM GPSR EUD 10.782 10.180 9.206 13.142 13.574 9.741 21.844 11.134 12.450
ADMM BPP EUD 10.671 10.148 9.114 12.936 13.254 9.751 22.564 11.160 12.450
ADMM HALS EUD 10.883 10.229 9.487 12.749 13.456 9.985 22.584 11.378 12.593
ADMM ORI EUD 1.072 4.538 3.704 6.383 7.960 4.755 14.472 6.742 6.203
ADMM GPSR KL 9.389 9.320 8.339 11.906 12.739 8.287 19.775 9.042 11.099
ADMM BPP KL 9.679 9.350 8.483 11.718 12.511 8.621 19.687 9.614 11.208
ADMM HALS KL 7.705 7.006 5.689 11.351 11.892 4.777 20.105 4.586 9.139
ADMM ORI KL 5.628 6.642 4.490 4.034 9.658 6.689 9.931 7.019 6.888
ADMM GPSR IS 6.314 5.691 4.557 7.198 8.154 4.425 6.978 5.671 6.123
ADMM BPP IS 7.350 7.310 6.493 7.830 8.786 7.263 6.548 8.342 7.491
ADMM HALS IS 6.993 5.930 4.900 7.406 8.555 4.356 5.817 7.889 6.481
ADMM ORI IS 4.984 4.284 3.166 5.553 6.602 2.698 5.209 2.487 4.373
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Figure 1: Comparison of the proposed ADMM algorithms with
ADMM ORI on synthetic data: KL as cost function and ρ = 1.

ρ = 0.1 and the iteration number is 200. We generate noisy
speech files (4 seconds in duration per file) by adding different
kinds of noises. Specifically, 10 utterances are selected from the
TIMIT corpus 3 and we manually corrupt them with 8 typical
noises selected from the NOISE92 corpus [22]. We evaluate the
ADMM algorithms with different cost functions under differ-
ent noise conditions. Experimental results are shown in Table
1. For EUD, ADMM HALS achieves superior performance as
compared with other ADMM algorithms. For KL-divergence
and IS-divergence, ADMM BPP yields the best results. In par-
ticular, ADMM GPSR shows a good performance among EU-
D, KL-divergence and IS-divergence. In contrast, ADMM ORI
demonstrates inferior performance due to the instability and
low-accuracy problem.

5. Conclusions
In this paper, in order to guarantee the stability of ADMM while
improving the accuracy, we propose a new ADMM based NMF
update framework. Specifically, we develop a class of advanced
regularized ADMM algorithms for NMF to achieve efficien-
t and robust learning (update) rules by incorporating l1-norm
and the Frobenius-norm regularization. The l1-norm promotes
a uniqueness of solutions and represents that a priori on vari-
able is Laplacian. This priori information coincides with the
distribution of some real data, e.g., speech signal, which im-
proves the accuracy of algorithm. The Frobenius-norm is a spe-
cial case of Tikhonov regularization which can be adopted to

3https://catalog.ldc.upenn.edu/LDC93S1
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Figure 2: Comparison of the proposed ADMM algorithms with
ADMM ORI on real spectrum data: KL as cost function and
ρ = 0.5.

stabilize the algorithms especially for ADMM BPP and ADM-
M HALS. The proposed framework turns the updates of vari-
able W and H into the NNLS problem. In this study, we adopt
BPP , HALS and GPSR to update variables instead of solving
the close-form solution. The new update rules under the pro-
posed framework can make the solution much more stable and
accelerate the convergence speed. We evaluate the ADMM al-
gorithms using synthetic data and real data. We compare the
performance of ADMM algorithms on source separation using
EUD, KL-divergence and IS-divergence as cost functions. Re-
sults demonstrate that the proposed algorithms converge faster
and yield more stable and accurate results than the conventional
ADMM algorithm.
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