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Abstract

Automatic prediction of articulatory movements from speech
or text can be beneficial for many applications such as speech
recognition and synthesis. A recent approach has reported state-
of-the-art performance in speech-to-articulatory prediction us-
ing feed forward neural networks. In this paper, we investigate
the feasibility of using bidirectional long short-term memory
based recurrent neural networks (BLSTM-RNNSs) in articulato-
ry movement prediction because they have long-context trajec-
tory modeling ability. We show on the MNGUO dataset that
BLSTM-RNN apparently outperforms feed forward networks
and pushes the state-of-the-art RMSE from 0.885 mm to 0.565
mm. On the other hand, predicting articulatory information
from text heavily relies on handcrafted linguistic and prosodic
features, e.g., POS and TOBI labels. In this paper, we propose
to use word and phone embeddings to substitute these manu-
al features. Word/phone embedding features are automatically
learned from unlabeled text data by a neural network language
model. We show that word and phone embeddings can achieve
comparable performance without using POS and TOBI features.
More promisingly, combining the conventional full feature set
with phone embedding, the lowest RMSE is achieved.

Index Terms: articulatory movement predictions, articulatory
inversion, long short term memory (LSTM), word2vec, recur-
rent neural network (RNN)

1. Introduction

Human speech originated from articulatory movements that in-
volve systematic combinations of motions from tongue, jaw,
lips, velum, etc. These movements can be accurately record-
ed by human articulography, e.g., electromagnetic articulogra-
phy (EMA) [1]. But it often needs a cumbersome setup and a
complicated recording procedure. Automated systems capable
of approximating the position of the articulators from acoustic
speech or text are known to be quite useful in many practical ap-
plications. In speech recognition, articulatory information can
provide additional speech production knowledge to improve the
recognition performance [2,3]. In speech synthesis, articulatory
information is used to improve the voice quality or to modify the
characteristics of the synthesized voice [4,5]. In audio-visual
speech processing, articulatory features can be regarded as an
intermediate parametrization of speech that has close link with
facial feature positions. Hence articulatory features can be used
to synthesize natural facial animation for language tutoring or
natural user interface [6,7].

1.1. Related Works and Problems

Many methods have been previously proposed to predict articu-
latory movements [5,8-11]. When acoustic features are the in-
put to estimate the articulatory movements, the problem is also
known as acoustic-to-articulatory mapping or articulatory in-
version. In [5], a Gaussian mixture model (GMM) for the joint
distribution of acoustic and articulatory features was adopted
to achieve the mapping from acoustic features to articulatory
features. In [9], a hidden Markov model (HMM) approach to
articulatory movement prediction from speech was presented,
which adopted a similar framework to HMM-based paramet-
ric speech synthesis. There are several variants of the HMM
framework [8,9, 12, 13] and HMMs are also proven to be quite
useful in articulatory prediction from text [8]. Similar to text-
to-speech (TTS), HMM-based articulatory prediction usually
adopts a rich set of features, including linguistic and prosodic
representations. In [8], combination of text and acoustic fea-
tures led to further gain in prediction accuracy. The articulato-
ry movement prediction problem can be directly evaluated by
prediction error metrics like root mean squared error (RMSE),
while a recent research from [14] has studied the task-specific
evaluation method.

Artificial neural networks (ANNs) have been proven to be
quite effective in regression tasks like acoustic-to-articulatory
mapping [10, 15-17]. In an early study [18], a multilayer per-
ceptions (MLP) approach has been used and the predicted ar-
ticulatory movements have proved to be quite useful for con-
tinuous speech recognition. Later, Richmond proposed a tra-
jectory mixture density network (TMDN). With the help of the
maximum-likelihood parameter generation (MLPG) algorithm,
his approach is able to provide smooth articulatory trajectories.
Recently, neural networks with multiple hidden layers, i.e., deep
neutral networks (DNNSs), have achieved tremendous success
in speech recognition [19, 20] and synthesis [21,22]. To the
best of our knowledge, Uria [23] is the first one who introduced
deep networks into the articulatory inversion task. Specifically,
he investigated a DNN and a deep version of the TMDN and
obtained an average RMSE of 0.885 mm on the MNGUO test
dataset [1]. As far as we know, this is the state-of-the-art inver-
sion accuracy publicly ever reported. However, in order to mod-
el the temporal context information of speech, he borrowed the
bigger feature window idea usually used in DNN-HMM speech
recognition [24]. That is, a pre-defined fixed-length context
window, covering several frames of acoustic features, is used
as the network input. Moreover, this approach only uses piece-
wise projections to estimate articulatory movements. The tem-
poral correlations in the whole speech utterance are apparently
neglected.



On the other hand, predicting articulatory information from
text can be problematic. Current approaches highly rely on rich
linguistic and prosodic features, such as part-of-speech (POS)
labels and tone and break index (TOBI). Manually labeling
these features is quite expensive. Most importantly, annotation
needs particular human expertise and tremendous efforts. Ma-
chine learning methods can be used to predict these features,
but the performance is far from satisfactory, especially for TO-
BI labeling [25]. Even worse, prediction errors will definitely
spread to the downstream articulatory prediction step.

1.2. The Proposed Approach

In this paper, we propose a new approach to (1) model the long-
range speech dynamics more precisely through a recurrent neu-
ral network (RNN) and (2) substitute the manual POS and TO-
BI features with automatically learned word/phone embeddings
through a neural network. Specifically, to achieve (1), we use
a deep bidirectional long-short term memory (BLSTM) based
RNN to model the speech/text to articulatory mapping. This
is inspired by the recent success of its long-context trajectory
modeling ability in speech recognition and synthesis. More-
over, different from previous studies in which line spectral fre-
quencies (LSF) are used as acoustic features, we use MFCC as
input in articulatory inversion. Experiments on MNGUO dataset
show that the BLSTM-RNN with MFCC input pushes the state-
of-the-art performance in articulatory inversion from 0.885 mm
to 0.565 mm in term of RMSE. To achieve (2), we use neural
network based word embedding [26,27] and phoneme embed-
ding as features. This is inspired from the successful use of
word embedding as POS and TOBI feature substitution in a re-
cent TTS approach [28]. Word embedding is a low dimensional
continuous-valued vector effectively used to represent a word.
This feature, learned from unlabelled text data in a fully unsu-
pervised way, is assumed to carry important syntactic and se-
mantic information [29]. More importantly, we propose phone
embedding that is learned from triphone sequences simply con-
verted from text. Interestingly, we discover that the obtained tri-
phone vectors convey pronunciation similarity information. Ex-
periments on text-to-articulatory mapping show that word and
phone embeddings can achieve comparable performance with-
out using POS and TOBI features and promisingly, combing
conventional full feature set with phone embedding, the lowest
RMSE is achieved.

2. Network Architecture

A recurrent neural network (RNN) is a typical class of neu-
ral network in which connections between units form a direct-
ed cycle. This creates an internal state of the network which
allows it to exhibit dynamic temporal behavior. In an RNN,
given an input sequence £ = [x1, ..., 27|, the hidden vector
h = [h1, ..., hr] and the output vector y = [y1, ..., yr| can be
computed from ¢ = 1 to 7" according to:

he = H(Wznxt + Whnhe—1 + bp), (D
Yt = Whyht + by7 (2)

where H is the activation function of a hidden layer, W terms
denote the weight matrices and the b terms are the bias vectors.

In order to fully make use of the context of input se-
quences in both preceding and succeeding directions, bidirec-
tional RNNs (BRNNs) have been proposed [30]. As shown in
Fig. 1, BRNNs compute the forward sequence h and the back-
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In a standard RNN, H is usually a sigmoid or hyperbolic
tangent function, which leads to the limitation of the inability
to learn long-range context dependencies. A network with long
short-term memory (LSTM) blocks can solve this problem. An
LSTM network consists of recurrently connected blocks, known
as memory blocks. The structure of a single LSTM memory
block is illustrated in Fig. 2. Every memory block contains self-
connected memory cells and three adaptive and multiplicative
gate units (input, output and forget gates), which can respec-
tively provide writing, reading and resetting operations for the
cells. Among them, forget gates are shown to be essential for
problems involving continual or very long strings [31].

Combining the advantages of BRNNs and LSTMs, bidi-
rectional LSTM based RNNs have been designed [32], which
can make use of long-range context in both forward and back-
ward directions. Motivated by the recent success of deep net-
work architectures, deep BLSTM-RNNS are considered to build
up high level representations of input features. BLSTM-RNNs
have been successfully used in regression tasks like speech syn-
thesis [28] and visual speech synthesis [33]. In this paper, we in-
troduce BLSTM-RNNS into the task of articulatory movement
prediction with speech and text input.

3. Word/Phone Embedding

Previous text-to-articulatory-movement prediction has made
use of a broad set of hand-crafted linguistic and prosodic fea-
tures [34], including part of speech (POS) tags and tones and
breaks indices (TOBI). These features are usually manually la-
belled or predicted using machine learning methods. We aim
to use neural network based word and phone vector represen-
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tations automatically learned from unlabeled text data to sub-
stitute these manual features. Previous studies have shown that
neural network based word vectors encode many linguistic reg-
ularities and semantics that can be used as features in natu-
ral language processing applications [35]. A recent study has
shown that word embedding can serve as a useful feature in
TTS synthesis [28].

3.1. Word/Phone Embedding Generation

Word embedding can be learned by a neural network lan-
guage model (NNLM) which predicts the current word’s prob-
ability distribution from previous words. In order to train
an NNLM, a large text corpus is used, which consists of
a large number of sentences represented by word sequence
wi, W, -+ ,We, -+ ,wr, where wy € V and V is a large and
finite vocabulary set. The objective is to learn a model [36]:
F@iy oy wimnp1) = Plwe|wi™). (6)
To achieve this, the function is decomposed into two parts:
a mapping C' from any word w; in V' to a real-valued vec-
tor C(w;) and a function g mapping an input sequence of
word with vector representations (C(wi—n+1),- - C(wi—1))
to a conditional probability distribution over words in V' for the
next word w;. The output of g is a vector of size V' and its ith
element estimates the probability P(w; = i|wi™"). So we have
flwi1; s wini1)=g(i,C(wi-1); -, C(wi—nt1)). (7)
Hence the original function f is composed of two mappings,
C and g, with C being shared across all the words in the con-
text. C is a |V| x m matrix whose row i is the vector repre-
sentation C'(w;) for word w;. In practice, all words are repre-
sented with one hot representation (1-of-V) whose dimension
is |V'|. Each input word vector w; is mapped to C(w;) which
has a much lower dimension m by multiplying a weight matrix
W(m x |V|) : C(w;) = Ww;. The two mappings (C and g)
are realized by neural networks and trained by back propaga-
tion. The main difference between training W and training the
weights of mapping ¢ is that all input words share one W. The
network structure is shown in Fig. 3.

Currently, such kind of vector representation is only lim-
ited to the word level. We apply the above method to a low-
er granularity, i.e., phone level. First, we expand a word
sequence wi,wa, -+ ,We, -+ ,wr to its triphone sequence
P1,P2, " ,Pt," - , P by cross-word expansion according to
a pronunciation dictionary. Then using the method above, we
obtain the vector representation C(p; ) for a triphone p;.

In our study, word2vec' from Google is used, which is a tool
for efficient implementation of the continuous bag-of-words
(CBOW) and skip-gram architectures for computing vector rep-
resentations of words. Specifically, we use CBOW architecture
in our implementation. Please refer to [37] for more details.

Thttps://code.google.com/p/word2vec/

BB

aayinmzz

kg, FNHuwl r-n+eyl aa2-n+z
FOYY nvayl r-n+er0
t-b+aol r-ntehi ael-n+z h1
e ahl-n+z
r-n+ay 1, -n+z
“#:f);ﬁl(\\l\}ﬁ r-n+aol %f‘ﬁ% indrh-hzz
r-n+ih0 -n+ihl aa0-n+z iy2-n+gyhmez

e OWlef-A+2
r-n+ael 1+owl agiBttz  oyl-ni@o-n+z ah0-n+z

Figure 4: Clustering results on triphone vectors

3.2. Meanings of Phone Embedding

Previous approaches have shown that word embedding carries
a certain syntactic and semantic information. For example, if
we perform clustering on the word vectors, “meaningful” word
categorises are generated. Words that are similar in semantics,
e.g., car, automobile, van, BMW, Ford, are clustered to one cat-
egory. Hence we are interested to see what kind of information
phone level embedding carries. Similarly, we perform k-means
clustering on the triphone vectors (k=500) and the clustering re-
sults are shown in Fig. 4. The t-SNE algorithm [38] is used for
dimension reduction of the representations, so as to generate
the two-dimensional plots for visualization. We interestingly
discover that triphones are clustered according to their pronun-
ciation similarity in general. In Fig. 4, two clusters are zoomed
in and about 30 samples are shown for each cluster. For the
cluster on the left (green), we can see that for most samples, the
central phone is /t/, the left context is /r/ and the right context is
a vowel. For the cluster on the right (blue), we can observe that
the central vowel is /n/, the right context is /z/ and the left con-
text is a vowel. Since the triphones in each cluster are kind of
similar in pronunciations, the articulatory movements produc-
ing these pronunciations should be similar too. We believe that
triphone vectors represent the pronunciation similarity informa-
tion to some extent.

4. Experiments
4.1. Experimental Setup

Our experiments were carried out on MNGUO [1] database with
1, 263 English utterances from a single speaker in a single ses-
sion. Parallel recordings of acoustic data and EMA data are
available. EMA data are collected with a sampling frequency
of 200Hz from 6 sensors located at the rongue dorsum (T3),
tongue body (T2), tongue tip (T1), lower lip (LL), upper lip
(UL), and lower incisor (LI). We exactly followed the experi-
mental configurations in previous studies [23]. Only x- and y-
coordinates of the 6 receivers were used in the experiments be-
cause the movements in z-axis were very small. The acoustic
feature consists of 40 frequency warped line spectral frequen-
cies (LSFs) and a gain value and the frame shift step is 5 ms in
order to obtain acoustic features at the same frequency as the E-
MA data. The database is partitioned into three sets: validation
and test sets comprising 63 utterances each, and a training set
consisting of the other 1, 137 utterances.

The word and phone vectors were trained using the English



Table 1: Results for networks with different hidden layers and
number of nodes. (B: bidirectional RNN; F: Feed-forward)

Nodes| BBB | BBF | BFB | BFF | FBB | FBF | FFB | FFF

64 1.127| 1.299| 0.960| 1.210| 0.984| 1.059| 1.061| 1.325

128 0.970| 1.317] 0.964| 1.201| 0.889| 0.971| 1.014| 1.482

256 1.041] 1.284| 1.125| 1.184| 0.901| 1.264| 0.993| 1.542

Table 2: Performance comparison between LSF and MFCC.
Feature/Node 64 128 256
LSF 0.984 | 0.889 | 0.901
MFCC 0.599 | 0.565 | 0.585

wikipedia text data 2 (95.3M). The vocabulary size is about
256K and 81K for words and triphones, respectively. We em-
bedded both word and phone into a 100-dimensional vector. A
popular toolkit named CURRENT was used for neural network
training. We set the learning rate and the momentum to le-
6 and 0.9, respectively and the weights were initialized with
a Gaussian random distribution. The training procedure stops
when the sum square error on the validation set no longer de-
clines within the last 10 epochs. We conducted evaluations by
directly comparing the predicted articulatory movements with
the original EMA data. The commonly used error metric, root
mean-squared error (RMSE), was used for objective evaluation.

4.2. BLSTM-RNNs for Articulatory Inversion

We tested the articulatory inversion performance of a set of net-
work topologies with different hidden layers (F: feed forward,
B: BLSTM) and node sizes (64, 128, 256). Results show that
the 3-hidden-layer structures outperform the 1- and 2-hidden
layer structures in general. The results for the tested 3-hidden-
layer structures are summarized in Table 1. We interestingly
found that, the topologies with a bidirectional layer (B) per-
forms consistently better than those with only feed forward (F)
layers. The best performed network topology is the one with
two BSLTM layers sitting on top of one feed-forward layer (F-
BB). We keep this structure and further adjust the number of
nodes in each hidden layer. The best performance is achieved
by a 150-node network, with the lowest RMSE of 0.867mm,
which outperforms the state-of-the-art performance (0.885mm)
achieved by a deep trajectory mixture density network (DTMD-
N) [23].

4.3. LSF vs. MFCC

In the last decade, most studies on articulatory inversion took
line spectral frequencies (LSF) as the acoustic feature. This
is reasonable because LSF is an articulatory-originated feature.
Interestingly, we discovered that MFCC is able to boost the pre-
diction error to a new low level. Framewise 39-dimensional M-
FCC features were extracted at the same frame rate of LSF. Per-
formance comparison is summarized in Table 2, in which the
network structure is FBB. We can clearly find that the RMSE
achieved by MFCC is much lower than LSF. The FBB network
with 128 hidden nodes each layer achieves the lowest RMSE
of 0.565. This is a new record in articulatory inversion experi-
ments conducted on the MNGUO dataset.

4.4. Word/Phone Embeddings

We tested text-to-articulatory-movement prediction using an F-
BB128 network. We split the input features into four subsets:
* Basic (321 Dim): the broad linguistic context feature set
from Table 1 of [8], excluding POS and TOBI;
¢ POS&TOBI (35 Dim): the POS and TOBI features
from Table 1 of [8];

Zhttp://mattmahoney.net/dc/enwik9.zip

Table 3: Results for text-to-articulatory prediction.

Features RMSE
Basic + POS&TOBI 1.870
Basic 1.925
Word2vec 2.530
Triphone2vec 2.348
Basic+Word2vec 1.894
Basic+Triphone2vec 1.881
Basic+POS&TOBI+Word2vec 1.782
Basic+POS&TOBI+Triphone2vec 1.734

e Word2vec (100 Dim): the word vector feature intro-
duced in Section 4.1;

¢ Triphone2vec (100 Dim): the triphone vector feature in-
troduced in Section 4.1.

Results are listed in Table 3. First, we notice that the RMSE
remains at a high level compared with acoustic-to-articulatory
prediction. The same observation is also reported in [8]. When
POS and TOBI features are removed (only Basic), the RMSE
has a notable increase. This shows the importance of these
handcrafted features. When Word2vec feature is added to
the basic feature set, the RMSE drops to a comparable val-
ue with the full feature set (Basic + POS&TOBI). The ad-
dition of triphone2vec to the Basic feature set shows a more
promising result with a lower RMSE much closer to Ba-
sic+POS&TOBI. When Word2vec or Triphone2vec is further
combined with Basic+POS&TOBI, interestingly we observe
obvious decrease in RMSE. The lowest RMSE is achieved by
Basic+POS&TOBI+Triphone2vec with 10% and 7.3% relative
RMSE reduction compared with Basic and Basic+POS&TOBI,
respectively. This may indicate that the word/phone embedding
features are complimentary with POS and TOBI features in the
articulatory prediction task. We believe that the superior perfor-
mance gain achieved by triphone2vec may come from its em-
bedded pronunciation similarity as discussed in Section 3.2.

5. Conclusions and Future Work

Our contributions are two fold. First, we boost the articulatory
inversion performance to a new level by the use of BLSTM-
RNN and the MFCC feature input. The best RMSE reported
before is 0.885mm in [23] and our approach achieves 0.565mm.
Second, in text-to-articulatory-movement-prediction, we man-
age to substitute POS and TOBI features with neural network
based word and phone vector features that are automatically
learned from unlabelled text data. We find that word and phone
embeddings can achieve comparable performance without us-
ing POS and TOBI features. More promisingly, combining the
conventional full feature set with phone embedding, the lowest
RMSE is achieved. There is still a substantial amount of work
to do in the future. First, further performance gain is expected
when acoustic and text features are integrated as input. Second,
our work on text-to-articulatory prediction is still preliminary.
We plan to take duration and phone state information into ac-
count. From [8], a dramatic RMSE decrease is observed if these
features are included. Our word/phone vector features need to
be finely tuned with different training data and dimensionality.
We believe fine-tuning will further boost the performance.
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