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ABSTRACT

In this paper, we address the problem of phase retrieval to recover a
signal from the magnitude of its Fourier transform. In many applica-
tions of phase retrieval, the signals encountered are naturally sparse.
In this work, we consider the case where the signal is sparse under
the assumption that few components are nonzero. We exploit fur-
ther the sparse nature of the signals and propose a two stage sparse
phase retrieval algorithm. A simple iterative minimization algorithm
recovers a sparse signal from measurements of its Fourier transfor-
m (or other linear transform) magnitude based on the minimization
of a block l1 norm. We show in the experiments that the proposed
algorithm achieves a competitive performance. It is robust to noise
and scalable in practical implementation. The proposed method con-
verges to a more accurate and stable solution than other existing
techniques for synthetic signals. For speech signals, experiments
show that the voice quality of reconstructed speech signals is almost
as good as the original signals.
Index Terms: Phase Retrieval, Damped Gauss-Newton Method, S-
parse Coding

1. INTRODUCTION

Recovery of a signal from the magnitude of its Fourier transform, or
equivalently, from its auto correlation is known as phase retrieval [1].
This problem arises in many applications such as X-ray crystallog-
raphy [1, 2], astronomical imaging [3], microscopy [4] and speech
processing applications [5, 6]. There was a recent interest in study-
ing the phase importance of signals in speech processing [6]. Many
studies elaborated the potential of using phase information in audio
and speech signal processing applications such as speech enhance-
ment [7], speech recognition [8] and speech analysis/synthesis [9].

Conventionally, most speech features only contain Fourier trans-
form amplitude information (Mel-frequendy Cepstral coefficients is
an example) without the phase information. The reasons why phase
information was neglected vary in different applications. A detailed
discussion can be found in [6]. The recent studies have revealed the
importance of phase information and how it impacts on system per-
formance. For example, a minimum phase technique improves the
performance of text-to-speech synthesis systems [10], and an esti-
mated phase from the spectral amplitude improves the performance
of source separation [11] and speech enhancement [12]. It is gen-
erally believed that an effective phase retrieval algorithm would be
helpful for many speech signal processing applications.

Given a signal, there could be many other different signals
whose Fourier transforms share the same magnitude, so the problem
is generally ill-posed [13]. For any given Fourier transform magni-
tude, every possible retrieved phase may lead to a different signal.

A common approach to overcome this ill-posed problem is to ex-
ploit the prior information of the signal such as the support of signal
(region in which the signal is nonzero), non-negativity and the mag-
nitude of signal is used by most methods.

Two main categories of approaches have been proposed to solve
this problem, namely, semi-definite programming-based approach-
es (SDP-based) [14, 15, 16, 17] and iterative projection approaches
(Fienup-type) [18, 19, 20, 21]. Despite tremendous progress, phase
retrieval remains a challenging problem. The SDP-based approaches
are not suitable for large scale problems, and the iterative projection
approaches suffer from convergence issues especially for 1D signals
[22, 23]. Recently, many researchers exploit the sparsity of a sig-
nal to recover signal, and many sparse signal processing approach-
es are proposed [23, 24, 25]. Among these methods, an algorith-
m named GESPAR [23] outperforms conventional SDP-based and
Fienup-type method in terms of complexity, success probability and
robustness to noise. The method derived in this paper is motivated
in many aspects by the work in [23, 24, 26].

In this paper, we propose an effective phase retrieval method,
which leads to accurate recovery of sparse signals with very high
probability. The proposed approach is based upon the damped
Gauss-Newton method (DGN) [27, 28] and sparse coding method
[29]. The DGN method is used to minimize the objective function
and obtain a suboptimal estimation of the original signal. The local
linearization of the constraints induces a group-sparse structure on
the variables. The sparse coding method is used to get new mea-
surements of the estimated signal under different complete basis to
enforce this structure. We alternate the above two steps. Such an
iterative minimization achieves a good performance by finding the
optimal solution under different complete basis, which is called an
alternating optimization method. Due to the noise reduction abili-
ty of sparse coding method, we expect that the proposed method is
robust to noise.

Numerical simulations for sparse synthetic signals show that our
method is more accurate than current techniques and robust to noise.
Experiments for speech signal show that the voice quality of the re-
covered signal is almost as good as the original speech signal.

2. PROBLEM FORMULATION
Let x = (x1, x2, ..., xn) be a real-valued signal of length n. In order
to further exploit the sparsity of the signal, a (N − n) zero padding
version of x is given by x = (x1, x2, ..., xN ) . The square of an
N point discrete Fourier transform magnitude of vector x given by
Eq. (1) is a known measurement vector. Zero padding does not add
any extra information to the original signal and the Fourier transform
spectrum, but it helps to enforce the sparsity of the signal. We denote
the measurement vector as y = (y1, y2, ..., yN ).
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We can express y as y = |Fx|2, where F ∈ CN×N is the
DFT matrix with elements exp{− 2πj(m−1)(i−1)

N
}, and | • |2 is the

element-wise absolute square operation. The vector x is known
to be l-sparse, that is, it has l non-zero elements constraint by the
support set. In case of the signal is none sparse, the support is
s = (1, 2, ..., n). Our goal is to recover x or x given the mea-
surement vector y under the support s.

Define Ai = ℜ(F)Hi ℜ(Fi) +ℑ(Fi)
Hℑ(Fi) ∈ RN×N , where

Fi is the ith row of the DFT matrix F. We need to minimize the sum
of squared errors subject to the support constraint:

min
x

f(x) =

N∑
i=1

(xTAix− yi)
2

s.t. ∥x∥1 ≤ αl,

supp(x) = s = (s1, s2, ..., sl),

x ∈ RN .

(2)

where ∥ • ∥1 is the l1 norm, and α is a constant. Eq. (2) is the
mathematical formulation of phase retrieval problem that we con-
sider. Due to the loss of Fourier phase information, the solution of
this problem is trivial degenerated [23, 13]. Hence there is no guar-
antee for a unique recovery of x. This ambiguity cannot be resolved
using any method that use sparsity constraint and Fourier magnitude
measurements alone.

2.1. DGN and sparse coding method
The DGN method and sparse coding method are two iterative steps
in the proposed algorithm. We briefly describe next.

2.1.1. DGN method
The DGN method can be used to solve the problem of minimizing
the objective function f under a given support s = (s1, s2, ..., sl):

min{f(Usx) : x ∈ Rl}, (3)
where Us ∈ RN×l is the matrix consisting of the columns of the
identity matrix IN corresponding to the support set s. Combining
Eq. (2) and Eq. (3), we have the minimization formulation as

min{f(x) =
N∑
i=1

(xTUT
s AiUsx− yi)

2 : x ∈ Rl}. (4)

Let Bi = UT
s AiUs, and hi(x) = xTBix− yi. Then the function

f(x) from Eq. (4) can be written as

f(x) =
N∑
i=1

h2
i (x). (5)

This is a nonlinear least square problem. The DGN method begins
with an arbitrary vector x0. At each step, hi is replaced by a linear
approximation around xk−1:

hi ≈ hi(xk−1) +∇hi(xk−1)
T (x− xk−1)

= xT
k−1Bixk−1 − yi + 2(Bixk−1)

T (x− xk−1).
(6)

We choose xk to be the solution of the problem

min
x

N∑
i=1

(
xT
k−1Bixk−1 − yi + 2(Bixk−1)

T (x− xk−1)
)2

. (7)

Then this problem can be written as a linear least square problem

x̃k = argmin ∥J(xk−1)x− ek∥22, (8)

with the ith row of J(xk−1) being ∇hi(xk−1)
T = 2(Bixk−1)

T ,
and the ith component of ek given by yi + xT

k−1Bixk−1 for i =
1, 2, ..., N . The solution x̃k is

x̃k = (J(xk−1)
TJ(xk−1))

−1J(xk−1)
Tek. (9)

We then define the direction vector as dk = x̃k − xk−1, which is
used to update the solution to a stationary point of f(x). At last, x
is updated by xk = xk−1 + tkdk, where tk is the step-size. A more
detailed description of the method is given in [23].

2.1.2. Sparse coding method

The sparse coding method is used to find a representation of input
vectors approximately as a weighted linear combination of a small
number of basis vectors. Let X ∈ RN×M be the input matrix where
each column is an input vector x ∈ RN , let D ∈ RN×K be the basis
matrix where each column is a base vector d ∈ RN , and let Z ∈
RK×M be the coefficient matrix where each column is a coefficient
vector z ∈ RK . Then the input matrix X can be expressed as

X = DZ+N(σ2), (10)

where N(σ2) is the reconstruction error matrix which is usual-
ly assumed as a zero-mean Gaussian distribution with covariance
σ2. In the sparse coding method, the distribution is defined as
N(σ2) ∝ exp(−β∥Z∥1), where β is a constant. Assuming a u-
niform prior on the basis, the maximum posteriori estimate of the
base matrix and the coefficient matrix is the solution of following
optimization problem:

min
D,Z

1

2σ2
∥X−DZ∥2F + β∥Z∥1

s.t.
∑
i

D2
i,j ≤ c, ∀j = 1, ..., N,

(11)

where c is a constant number. This problem can be solved using
convex optimization methods, and we adopt the algorithm described
in [29].

2.2. The proposed alternating optimization

Suppose that we have M unknown signals given by X ∈ RN×M ,
with each column of the matrix is a vector xi ∈ RN , i = 1, 2, ...,M
corresponding to one signal. The square Fourier measurement of X
is given by Y ∈ RN×M , and the corresponding support is given by
S ∈ Rl×M .

The basic idea of our algorithm are two folds: 1) to find the local
optimal solution of Eq. (2) using DGN method; 2) to reconstruct the
local optimal solution using sparse coding method, which enhance
the group-sparse structure and the robustness to noise.

The proposed algorithm starts by applying the DGN method to
input Y,S and x0 to get an initialized suboptimal solution matrix
X̃0. The initial parameter x0 is a Gaussian random vector with ze-
ro mean and unit variance. Usually, the DGN method will stuck
in some suboptimal solutions with random initial vector. In order
to enhance the group-sparse structure and avoid the stagnation, we
apply sparse coding method to the input matrix X̃0, and the out-
put are the basis vectors D1 and the coefficient vectors Z1. Then
DGN method is used by taking X1 = D1Z1 as the initial matrix.
It is important to note that the local optimal reconstructed signal by



sparse coding is a near perfect reconstruction which increases the
group-sparse structure of the signal, and enhances the robustness to
noise. Comparing to random initialization, using the reconstructed
signal by sparse coding method as the initial vector will increase the
probability of convergence to global optimum. After the initializa-
tion step, the sparse coding method and DGN method alternate to
optimize iteratively the signal as described in Algorithm 1. Finally,
we can get a solution matrix X where each column xi is the solution
for Eq. (2).

If we ignore the reconstruction error N(σ2) in Eq. (10), the
minimization function of DGN method Eq. (4) can be rewritten as

min{f(z) =
N∑
i=1

(zTUT
s D

TAiDUsz− yi)
2 : z ∈ Rm}, (12)

where z is the coefficient vector under the new basis D learned by
sparse coding method, and m is the dimension of the coefficient vec-
tor. Let Bi = UT

s D
TAiDUs, and hi(z) = zTBiz − yi, then the

minimization function under the new basis can be written as

f(z) =

N∑
i=1

h2
i (z), (13)

which is the same as applying the DGN method to the new basis
learned by sparse coding method. Therefore, the iterative optimiza-
tion by DGN method and sparse coding method seeks to find a sub-
optimal solution near to global optimal solution for Eq. (2) under
different complete basis, which is supported by the simulation re-
sults in Section 3.

Algorithm 1
Input:

Y ∈ RN×M - measurement matrix, each column is a Fourier
transform magnitude measurement vector yi, i = 1, 2, ...,M .
S ∈ Rl×M - support set matrix, each column is a support vector
si, i = 1, 2, ...,M .
ITER - iteration numbers.
x0 ∈ Rl - initial vector for DGN method.
β - penalty factor in sparse coding method.
baseNum - number of basis vectors for sparse coding method.

General step:
1. Initialization

• Apply DGN method with parameter yi, si and x0 for
i = 1, 2, ...,M . The parameter yi and si are the ith col-
umn of matrix Y and S. The output x̃i is a suboptimal
solution given by Eq. (9).

• Repeat for i = 1, 2, ...,M , we get a solution matrix
X̃0 ∈ RN×M where each each column is vector x̃i.

2. Alternating optimization
Repeat

• Apply sparse coding method with input matrix X̃k−1 and
parameter: β, baseNum. The output is the basis vectors
Dk and the coefficient vectors Zk described Eq. (11).

• Apply DGN method with parameter yi, si and xi,k for
i = 1, 2, ...,M . Denoting xi as the ith column of matrix
Xk = DkZk, then the initial vector xi,k = xi(si). The
output is a updated suboptimal solution matrix X̃k.

Until iteration number k ≥ ITER.
Output:

X ∈ RN×M - a matrix where each column xi ∈ RN , i =
1, 2, ...,M is the solution for Eq. (2).

Fig. 1. Effect of iteration numbers (ITER) on recovery probability

3. NUMERICAL SIMULATIONS

To demonstrate the performance of our proposed method, we con-
duct several numerical simulations for both synthetic sparse signals
and speech signals (none sparse).

3.1. Simulation for sparse signals

For sparse signals, we synthesise 100 different random vectors
xi, i = 1, 2, ...100 of length n = 64. Each vector is uniformly dis-
tributed in range [−4,−3]

∪
[3, 4]. The support and the signal values

are randomly selected for each simulation. The N = 128 point DFT
of each signal is calculated, and their magnitude square is the mea-
surement vectors yi, i = 1, 2, ..., 100. The GESPAR algorithm is
tested for comparison purposes. The GESPAR method outperforms
the conventional SDP-based and iterative Fienup-type algorithms in
terms of recovery probability and the robustness to noise.

Fig. 2. Recovery probability vs. sparsity level

The number of iteration is an important factor (the input param-
eter ITER in Algorithm 1) in the proposed algorithm. By increas-
ing the number of iterations, we increase the probability to find the
correct solution at the cost of increased computation time. The pa-
rameter ITER is tested in the range [2, 64]. We report the recovery
probability as a function of the number of iterations in Fig. 1, where
the result is plotted for different sparsity levels. The success proba-
bility is defined as the ratio of correctly recovered signals x out of
100 simulations. The results show that by increasing the number of



Fig. 4. Spectrograms of signal reconstructed by the proposed method (left), the original signal (middle) and signal reconstructed by the
GESPA method (right). We emphasize three regions for comparison.

Fig. 3. Normalized MSE vs. sparsity level

Table 1. The NMSE and Quality Score of recovered speech signals.

NMSE Quality Score
Our method GESPAR Our method GESPAR

1 0.38 0.42 4.2 3.8
2 0.40 0.42 4.1 3.8
3 0.41 0.45 4.2 3.9
4 0.40 0.43 4.1 3.6
5 0.40 0.43 3.9 3.6
6 0.42 0.45 4.0 3.8
7 0.42 0.46 3.8 3.5
8 0.36 0.39 4.2 4.0
9 0.37 0.39 4.1 3.7
10 0.39 0.41 4.0 3.6

Average 0.395 0.423 4.06 3.73

iterations, we improve the recovery probability. The signal recovery
results of our method (ITER = 4) and the GESPAR method are
shown in Fig. 2. It is clear that our proposed algorithm outperforms
GESPAR. Let’s define signal to noise ratio as SNR = 20log ∥y∥

∥v∥ ,
where y is the Fourier measurement and v is a white Gaussian noise,
and the normalized mean squared reconstruction error (NMSE) as
NMSE = ∥x−x̂∥2

∥x∥2
, where x̂ is the reconstructed signal. We have

the NMSE for different SNR values in Fig. 3. We can see that our

method is more robust to noise.

3.2. Experiment for speech signals

We use 10 mono, 16-bit, 16kHz sampled speech signals from CMU-
ARCTIC database to see how the proposed method works for none
sparse signals. The speech signal is divided into frames with length
n = 64 and overlap o = 32. The Hanning windowed speech
frames make up a matrix, and its Fourier transform magnitude is
the input of the proposed method. We apply the proposed method
(ITER = 4) to get an approximately recovered matrix. By over-
lapping and adding each column of the recovered matrix, we can
reconstruct a speech signal. We apply some minor revisions to the
GESPAR algorithm, and test it with the same speech signal and same
procedure to get a result too.

In Fig. 4, we compare the spectrograms of one signal recon-
structed by our approach, the original speech signal, and the signal
reconstructed by GESPAR. We can see that the phase retrieval result
of our method recovers more details about pitch and formants. The
NMSE of reconstructed signals of our method is also smaller than
that of GESPAR as shown in Table 1. We conduct a listening test to
compare the voice quality of the reconstructed signals. A score of
range 1 to 5 (the default score of original signal is 5) is marked by
10 different listeners according to the voice quality. We also report
the average score of the reconstructed signals in Table 1. We can see
that listeners consistently favor our method.

4. CONCLUSIONS

We propose an effective phase retrieval algorithm for recovering a
signal from its Fourier transform magnitude. The proposed method
leads to accurate recovery of sparse signals with very high proba-
bility, and also works for none sparse signals with an approximate
solution. Numerical simulations show that our method outperforms
alternative approaches in terms of success probability and robustness
to noise. Experiments for speech signals show that the voice quality
of the reconstructed signal is almost as good as the original speech.
Although our proposed algorithm has good empirical performance,
we shall carry out theoretical analysis regarding the convergence of
the iterative optimization for the phase retrieval problem in a non-
convex setting.
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