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Abstract—Nonnegative matrix factorization (NMF) is a popu-
lar method for source separation. In this paper, an alternating di-
rection method of multipliers (ADMM) for NMF is studied, which
deals with the NMF problem using the cost function of beta-
divergence. Our study shows that this algorithm outperforms
state-of-the-art algorithms on synthetic data sets, but it presents
unstable behavior and low accuracy on real data sets. Therefore,
we propose two different stable ADMM algorithms for NMF
to solve this problem. They differ slightly in the multiplicative
factor utilized in the update rules. One algorithm is to adapt the
step size to guarantee the convergence while the other minimizes
the beta-divergence with a pivot element weighting iterative
method (PEWI). Experimental results demonstrate that the
proposed algorithms are more stable and accurate. Particularly,
PEWI based ADMM shows superior performance in the source
separation task.

I. INTRODUCTION

NMF [1] has been applied to various applications such as

polyphonic music transcription [2] and source separation [3].

Given a data matrix V of dimensions M×N with non-negative

entries, NMF aims at finding two low-rank matrices W and

H such that

V ≈ WH. (1)

The common approach is to minimize the difference between

V and WH using Euclidean distance (EUD):

minimize
W≥0,H≥0

1

2

M∑
m=1

N∑
n=1

(Vmn − (WH)mn)
2
. (2)

In practice, the problem is convex in W and H separately, so

many algorithms adopt an alternating minimization approach.

The most popular approach is a simple multiplicative update

method proposed by Lee and Seung [4], but the convergence of

the algorithm to a stationary point has not yet been proven [5].

Based on alternating nonnegative least squares, several algo-

rithms have been proposed and showed good performance such

as the project gradient method [6] and the block principal

pivoting method [7]. These algorithms possess a property that

every produced limit point is a stationary point [6].

The mentioned algorithms rely on special properties of EU-

D, and they are not universal for different applications. Recent-

ly, Sun et al. [8] proposed an ADMM based universal update

framework (Universal ADMM) which has faster convergence

and better accuracy than the state-of-the-art algorithms on

synthetic data sets. However, we discovered that for real non-

negative data, e.g., speech spectrum, Universal ADMM results

in lower performance than our expectation in terms of stability

and accuracy. Through the analysis of our experimental results,

we find that this phenomenon happens due to the ill-condition

of matrices while updating dictionary matrix and activation

matrix.

In this paper, in order to make ADMM to work properly on

real non-negative data, two different stable ADMM algorithms

are proposed to solve the ill-condition problem for NMF.

Algorithm 1 adapts step size to prevent ill-condition indirectly,

while Algorithm 2 solves the ill-conditioned issue using an

PEWI method directly. We apply the proposed algorithms to

NMF-based source separation. Experimental results show that,

compared with Universal ADMM, the proposed algorithms

are more stable and accurate, and particularly, Algorithm 2

outperforms the others in stability and accuracy. It can achieve

the best source separation results. For further improvement

of accuracy, we also analyze the correlation of distribution

of signals, the cost function and the accuracy of ADMM

algorithms.

II. ADMM ALGORITHM

ADMM is a simple but powerful algorithm that is well

suited to distributed convex optimization. It can blend the

decomposability of dual ascent with the superior convergence

properties of the method of multipliers [9]. The algorithm

solves problems in the form

minimize
x,z

f(x) + g(z)

subject to Ax+Bz = c,
(3)



where f and g are convex functions defined on closed sets,

The augmented Lagrangian for problem (3) is

Lρ = f(x) + g(z) + yT (Ax+Bz − c)

+ (ρ/2) ‖Ax+Bz − c‖22 ,
(4)

where ρ is dual step size, y is the dual variable or Lagrange

multiplier. ADMM involves the following iterations

xk+1 := argminxLρ(x, z
k, yk)

zk+1 := argminzLρ(x
k+1, z, yk)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c).

(5)

Decomposability: From Eq. (3), we find that ADMM

algorithm treats the separated variables as different variables

at the beginning, the same with constraints, that guarantees

the decomposability of ADMM algorithm. It is different from

dual decomposition which treats separated variables as parts

of primal variables, and all the parts should be gathered in

order to update dual variables.

Convergence Properties: For ADMM, the optimality con-

ditions for Eq. (3) are primal feasibility and dual feasibility,

i.e.,

Ax+Bz− c = 0, ∇f(x) +AT y = 0 ∇g(z) +BT y = 0,

respectively. Since zk+1 minimizes Lρ(x
k+1, z, yk), we have

0 = ∇g(zk+1) +BT yk + ρBT (Axk+1 +Bzk+1 − c)

= ∇g(zk+1) +BT yk+1,

i.e., with ADMM dual variable update, (xk+1, zk+1, yk+1)

satisfies the second dual feasibility condition, and primal and

first dual feasibility are achieved as k → ∞. A detailed

convergence proof can be found in [10].

III. CONVENTIONAL ADMM FOR NMF

In distributed optimization, ADMM can blend the de-

composability of dual ascent with the superior convergence

properties of the method of multipliers [9]. In order to apply

ADMM algorithm to extensive applications using different

divergences, Sun and Févotte [8] developed an ADMM-based

update framework which extended the NMF problem to β-

divergence [11]. They proposed to split divergence with dic-

tionary and activation which makes optimization simpler and

much more universal for different divergences.

A. Universal ADMM

In the approach proposed by Sun and Févotte [8], the NMF

problem can be rewritten as

minimize Dβ(V |X)

subject to X = WH.

W = W+, H = H+

W+ ≥ 0, H+ ≥ 0,

(6)

where Dβ represents a general family of divergence functions

known as β-divergence. This approach introduces new vari-

ables W+ and H+ to which the nonnegativity constrains are

applied and a new variable X to split the divergence with

WH which makes the optimization problem simpler and also

more universal for different divergences. The corresponding

augmented Lagrangian is as followings

Lρ(X,W,H,W+, H+, αX , αW , αH) =

Dβ(V |X) + 〈αX , X −WH〉+ ρ

2
‖X −WH‖2F

+〈αW ,W −W+〉+ ρ

2
‖W −W+‖2F

+〈αH , H −H+〉+ ρ

2
‖H −H+‖2F .

(7)

The αX , αW , αH are three dual variables. The detailed update

roles can be found in [8]. In particular, the root formula and

Cardan formula are adapted to compute the update rule of X
corresponding to β=1 and β=0, respectively.

B. Existing Problem

In Universal ADMM algorithm updates, updating dictionary

matrix W and activation matrix H requires solving system

Ax = b [8]. Since the matrix A in updates is square and

nonsingular, the common solution adopts x = A−1b, however,

if this system is ill-conditioned, this common method may

yield unstable and imprecise results. During our experiments

on real data, we observe that Universal ADMM results in

unstable and low-accuracy solution shown in Fig.2 in Section

5.1.

The problem can be investigated by studying the stability of

x = A−1b. Assuming that x is the solution of original system

and x+Δx is the solution when b change from b to b+Δb.
According to properties of norm, we can write

‖Δx‖
‖x‖ ≤ ∥∥A−1

∥∥ · ‖A‖ · ‖Δb‖
‖b‖ . (8)

Likewise, if the coefficient matrix A changes from A to A+
ΔA while b is fixed, the solution is x+Δx, then the changes

of solution can be expressed in the following manner:

‖Δx‖
‖x‖ ≤

∥∥A−1
∥∥ · ‖A‖ · ‖ΔA‖

‖A‖
1− ‖A−1‖ · ‖A‖ · ‖ΔA‖

‖A‖
. (9)

We set K(A) =
∥∥A−1

∥∥ · ‖A‖ which is called the condition

number of matrix A, the K(A) is in fact a measure of the

relative sensitivity of solution x to changes in right-hand vector

b and coefficient matrix A. If K(A) becomes large, the system

is regarded as being ill-conditioned, i.e., small changes of

right-hand vector b or coefficient matrix A result in a large

change in the solution. In practice, we test the condition

number of system which solves W and H in each iteration,

the result shows that the point of solution mutation coincides

with large value of the condition number.

For speech data, the possible explanation is that since the

speech energy usually focuses on certain frequency bands, the

column features of dictionary W which captures prototypical

spectra will become similar, i.e., the column vectors in coeffi-

cient matrix A of linear systems which solve dictionary matrix



W are strongly correlated. When small changes occur in A, a

large change in x appears, e.g., for matrix A

A =

(
1000 1000
0 0.001

)
,

if the right-hand vector b = [1000, 0]T , the solution

x = [1, 0]T , while small change occurs on b, e.g., b =
[1000, 0.001], the solution abruptly changes to be x = [0, 1]T .

On the other hand, since the speech energy focus on certain

frequency bands, SVD factorization or eigenvalue factorization

of speech spectrum results in great difference between the

maximum eigenvalue and the minimum eigenvalue. Assuming

that two eigenvectors of matrix A are x1, x2, two eigenvalues

are λ1, λ2 respectively. For vector b, we can write

b = mx1 + nx2 =
m

λ1
λ1x1 +

n

λ2
λ2x2

= A(
m

λ1
x1 +

n

λ2
x2) = Ax.

If λ1 is much greater than λ2 and b changes in x1 direction,

i.e., m changes, the solution x does not change significantly;

otherwise, when b changes in x2 direction, i.e., n changes,

the solution x changes significantly. These two aspects have

a direct relationship with the large value and mutation of

condition number of linear system [12].

IV. STABLE ADMM FOR NMF

As discussed in the previous section, the instability of

ADMM essentially owes to large value and mutation of the

condition number of coefficient matrix A. Thus we propose

two methods to solve the ill-condition of coefficient matrix.

The first one avoids the ill-condition by heuristically adapting

the step size to change the convergence trend. The second

one solves the ill-conditioned system using PEWI algorithm

directly.

A. Algorithm 1: Changing the Convergence Trend

The basic form of Universal ADMM updates [8] on W and

H can be written as

Xk := f(Yk−1)\gk−1(ρ), (10)

where Xk is W or H in the kth iteration which can be

considered as the solution x. Yk−1 is H or W in the (k−1)th

iteration, respectively. f(Yk−1) can be regarded as the coeffi-

cient matrix A. gk−1(ρ) can be regarded as right-hand vector

b, and the \ denotes a least-squares solution to the system of

equations Ax = b [8].

The stability of the solution Xk (Eq. 10) depends on the

ill-condition degree of f(Yk−1) and the change degree of

gk−1(ρ). Therefore, we propose a heuristic idea that if ill-

conditioned degree of f(Y (k−1)) is out of the given interval,
Y (k−2) is adapted to update X(k), let Y (k−1) = Y (k−2).
At the same time, the value of ρ is changed by adding and

subtracting a constant Δ, i.e., new ρ∗ is in (ρ, ρ−Δ, ρ+Δ).
Contrasting the norm value, ρ∗ is selected to correspond to

the minimal norm value ‖g(ρ∗, k − 1)− g(ρ∗, k − 2)‖. The

detailed pseudo-code is given in Algorithm 1.

Algorithm 1 Changing the Convergence Trend

Require:
thrh : neighborhood value.

cond(f(Y0)) ∗ (1± thrh) : initial given interval.
ρ : initial dual step size.

Δ: changing step size of ρ.

Ensure:
if cond(f(Yk)) /∈ interval then

Yk−1 = Yk−2;

ρ∗ = [ρ, ρ+Δ, ρ−Δ];
min = 1e9;

for all i ∈ ρ∗ do
D = ‖g(i, k − 1)− g(i, k − 2)‖
if D < min then
ρ = i; min = D;

end if
end for

end if

This heuristic idea can change the convergence trend and

stabilize ADMM. However, it is also obvious that this method

slows down the convergence speed simultaneously by using

the prior to the last iteration result and decreasing change

degree of b to update x, as shown in Fig.3 and 4.

B. Algorithm 2: Pivot Element Weighting Iterative Method

In order to guarantee the stability of ADMM while im-

proving the convergence speed, we adopt a more simple

and efficient method named PEWI for solving ill-conditioned

linear systems. The form of pivot element weighting is as

follows:

A+ αE, (11)

where A is a positive definite square matrix, as f(Yk−1) in

Algorithm 1, E is the identity matrix, and α is a weighting

value. It has been proven that if A is a symmetric positive

definite matrix and α > 0, cond(A + αE) < cond(A) [13].

Therefore, we can rewrite the ill-conditioned system Ax = b
as (A+αE)x = b+αx which guarantees the small condition

number. Then we can construct the iterative formula

(A+ αE)xk+1 = b+ αxk. (12)

Let xk+1 = xk + ek, then

(A+ αE)ek = b−Axk, (13)

if ek → 0, and xk+1 → optimal solution, the proof of iterative

convergence can be found in [13]. In practice, we first set an

initial upper limit and the solution x0, if the ill-conditioned

degree of matrix A is out of the upper limit, we weight the

pivot element by a constant Δ until the matrix A is well-

conditioned, using Eq.(10) to iterate until the norm of ek meets

a certain accuracy eps. The detailed pseudo-code is given in

Algorithm 2. In particular, since the PEWI method improves

the condition number and guarantees the condition number in

a given interval, it gradually makes the solution out of the



Algorithm 2 Pivot Element Weighting Iterating

Require:
thrh : neighborhood value.

cond(A) ∗ (1 + thrh) : initial given upper limit.
Δ: changing step size. n = 0: counter.

eps : accuracy constant.

x0: initial solution.

Ensure:
while cond(A)) > limit do

A = A+Δ ∗ E;

n = n+ 1;

end while
x = A (b+ n ∗Δ) ∗ x0;

while |x− x0| > eps do
x0 = x;

x = A (b+ n ∗Δ) ∗ x0;

end while

bad solution set. The iteration number of PEWI until well-

condition gradually decreases, and the complexity of algorithm

can be accepted.

V. SOURCE SEPARATION VIA NMF

During the past decades, many methods have been proposed

for source separation including independent component anal-

ysis (ICA) [14], principle component analysis (PCA) [15] and

NMF [16] etc. Comparing to PCA and ICA, NMF has been

the most promising method in source separation owing to the

parts-based decomposition and non-negative constraint [16],

[17]. In this paper, we use a fully-supervised “factorize-train”

method [18]. Fig.1 shows a general pipeline of separation.

As shown in Fig.1, the “factorize-train” method firstly trans-

forms the time-field mixed signal xmix and individual clean

source xindiv1,2 to frequency-field using short-time Fourier

transform (STFT) and calculates the dictionary matrix of clean

source using magnitude |Xindiv1,2| by NMF respectively.

Then all the dictionaries including Windiv1 and Windiv2 are

concatenated as a dictionary W to factorize the mixed signal

in order to determine the activation matrix H . Because of

the parts-based decomposition of NMF, the dictionary ma-

trix captures the prototypical spectral in each column vector

that contains the latent information of multiple sources, and

the activation matrix captures the weight of each dictionary

vector through the time axis. Based on this representation,

because the dictionary indices are known for each source,

the separation can be performed by a filter which is referred

to as a masking filter. Combining the phase of mixed signal

∠Xmix and the separated magnitude Y1 and Y2, the separated

time-field signals y1 and y2 can be obtained by inverse short-

time Fourier transform (ISTFT). When we get the separated

signals, we use the blind source separation evaluation (BSS

Eval) toolkit[19], especially, we use the source-to-distortion

ratio (SDR) to evaluate the source separation results.

xmix Filter
|Xmix|

Xmix

xindiv1,2 NMF
|Xindiv1,2|STFT

STFT NMF

W=[Windiv1,Windiv2]

H

ISTFT

ISTFT

|Y1|

|Y2|

y1

y2

Fig. 1. Pipeline of separating two sources via NMF.

VI. EXPERIMENTS

We carried out our experiments to evaluate the proposed

algorithms. We consider two values of ρ using the cost

function of KL divergence to test algorithms on both synthetic

and real non-negative data. We set the iteration number to

1e5. Firstly, we examine the convergence performance of

Universal ADMM to identify the limitations of Universal

ADMM. Secondly, we compare the convergence performance

of Algorithm 1, Algorithm 2, and Universal ADMM on real

non-negative data, e.g., the spectrum data, as well as their

application to source separation task to show the stability of

the proposed algorithms. Finally, we discuss the correlation

among the distribution of signals, the cost function, and the

accuracy of the ADMM algorithms.

A. Universal ADMM

We evaluate the performance of Universal ADMM on both

synthetic and real non-negative data considering KL diver-

gence and two initial values of ρ = (1, 2.5). The synthetic

data V is constructed as V = W ∗ H where the initial W
and H are generated as the absolute of values of Gaussian

noise 1, the dimensions are M = 513,K = 25, N = 185.

Real spectrum data uses the speech magnitude spectrum with

size V = 513 ∗ 185. As shown in Fig 2, for synthetic data,

Universal ADMM has a stable convergence trend and produces

high accuracy 2. However, for real spectrum data, it is not

stable and has low accuracy.

B. Stable ADMM against Universal ADMM

The simulation results show the instability and low accuracy

of Universal ADMM on real data sets. Therefore, we compare

the performance of Algorithm 1, Algorithm 2, and Universal

ADMM on real spectrum data. For Algorithm 1, we set

thrh = 0.5 and the step size as ρ: Δ = 10 for current ρ > 1
and Δ = 0.1 for current ρ < 1. For Algorithm 2, we set

thrh = 0.02, Δ = 2, eps = 1e− 7 and x0 is unit vector. As

shown in Fig.3 and 4, the proposed algorithms demonstrate

more stable than Universal ADMM, and particularly, PEWI

based ADMM yields a positive performance in both stability

and accuracy.

We also compare the proposed algorithms with the Univer-

sal ADMM on source separation task using KL-divergence

1In MATLAB notation: V=abs(randn(M,K))*abs(randn(K,N)).
2The proposed algorithms focuses on solving the ill-conditioned system,

while synthetic data is not ill-conditioned, the proposed algorithms coincide
with general solver used in Universal ADMM.
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Fig. 2. Universal ADMM performance on synthetic data and real spectrum data: KL-divergence as the cost function and two settings of ρ = (1, 2.5).
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Fig. 3. Comparison of proposed ADMM performance with Universal ADMM on real spectrum data: KL-divergence as cost function and ρ = 1.

TABLE I
SDR OF SEPARATED SPEECH USING DIFFERENT ADMM ALGRITHMS ON SPEECH FROM TIMIT AND NOISES FROM NOISE92.

(fcmg0, f16) (fcmg0, m109) (fcmg0, engine) (mcal0, f16) (mcal0, m109) (mcal0, engine)

Algorithm 1 9.916 17.127 9.088 7.713 12.161 6.741

Algorithm 2 10.118 17.592 9.381 7.986 12.215 6.839

Universal ADMM 8.917 15.568 8.822 6.812 11.658 6.512

and ρ set to 1. We generate a noisy speech sample with

0db of length 4-sec using speech from TIMIT and noise

from NOISE92 with the same initialization for all algorithms

and set the iteration number to 5000. We adopt the source

separation pipeline shown in Fig.1, and the SDR of the results

are shown in Table 1. We can observe that the proposed

algorithms achieve superior performance in comparison to

Universal ADMM. Particularly, Algorithm 2 outperforms the

others.

The simulation results show that Algorithm 2 improves the

accuracy to some extent against others on real spectrum data;

but it is still lower than its accuracy performance on the

synthetic data. Thus, we compare the distribution of different

signals and analyse the correlation of distribution of signals,

the cost function, and the accuracy of the ADMM algorithms

to identify the issue. We consider two synthetic data sizes

(M,K,N) = (513, 25, 185)(V1) and (200, 100, 1000)(V2).

We chose the magnitude spectrum of speech, brown noise,

and noisy speech with size V = 513∗185. As shown in Fig.5,

the distribution of synthetic data approximates the normal

distribution while the real spectrum data approximates the

Laplace distribution. For data with a normal distribution, while

applying to the cost functions like KL-divergence, it can turn

the KL-divergence into a Euclidean distance which coincides

with the distribution of the signals. However, since the real

spectrum data is non-stationary signal, it is desired to develop

sparse NMF using ADMM with the cost function of KL-

divergence to further improve the accuracy performance of

algorithms.

C. Discussion on Accuracy of Algorithms

The simulation results show that Algorithm 2 improves the

accuracy to some extent against Algorithm 1 and Universal

ADMM on real spectrum data; but it is still lower than its
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Fig. 5. Comparison of probability distribution density of different signals including real spectrum data and synthetic data.

accuracy performance on the synthetic data. Thus, we compare

the distribution of different signals and analyse the correlation

of distribution of signals, the cost function, and the accuracy

of the ADMM algorithms to identify the issue. We consider

two synthetic data sizes (M,K,N) = (513, 25, 185)(V1)

and (200, 100, 1000)(V2). We chose the magnitude spectrum

of speech, brown noise, and noisy speech with size V =
513∗185. As shown in Fig.4, the distribution of synthetic data

approximates the normal distribution while the real spectrum

data approximates the Laplace distribution. For data with a

normal distribution, while applying to the cost functions like

KL-divergence, it can turn the KL-divergence into a Euclidean

distance which coincides with the distribution of the signals.

However, since the real spectrum data is non-stationary signal,

it is desired to develop sparse NMF using ADMM with the

cost function of KL-divergence to improve further the accuracy

performance of algorithms.

VII. CONCLUSIONS

In this paper, the instability and low accuracy of Universal

ADMM have been shown through the experiments. The anal-

ysis found that they are caused by the ill-condition of linear

system on real data sets. To solve the ill-condition problem,

we proposed two stable methods: Algorithm 1 and Algorithm

2. Algorithm 1 aims at adapting the step size to guarantee the

convergence. Algorithm 2 attempts to solve the ill-condition

problem using a pivot element weighting iterative method. The

experiments showed that our proposed algorithms are more

stable than Universal ADMM, and in particular, Algorithm

2 performs better than the other two algorithms in terms of

stability and accuracy. But the accuracy performance of all

ADMM algorithms on real non-negative data sets is still far

from that on synthetic data sets. In order to understand this

issue, we compare the distribution of different signals and

analyse the correlation of the distribution of signals, the cost

function, and the accuracy of ADMM algorithms. In order to

further improve the performance of the ADMM algorithms for

NMF on non-stationary signals, we shall develop sparse NMF

using ADMM with the cost function of KL-divergence in the

near future.
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