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ABSTRACT
Tracking-by-learning strategies have been effective in solv-
ing many challenging problems in visual tracking, in which
the learning sample generation and labeling play important
roles for final performance. Since the concern of deep learn-
ing based approaches has shown an impressive performance
in different vision tasks, how to properly apply the learning
model, such as CNN, to an online tracking framework is still
challenging. In this paper, to overcome the overfitting prob-
lem caused by straight-forward incorporation, we propose
an online tracking framework by constructing a CNN based
adaptive appearance model to generate more reliable train-
ing data over time. With a reformative Metropolis-Hastings
re-sampling scheme to reshape particles for a better state
posterior representation during online learning, the proposed
tracking outperforms most of the state-of-art trackers on
challenging benchmark video sequences.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Tracking

General Terms
Algorithm, Theory

Keywords
Object tracking, CNN, Metropolis-Hastings, Re-sampling

1. INTRODUCTION
Learning sample quality is an essential factor to robust on-

line tracking, but this task is not easy because it is hard to
manually intervene the sample generation and labeling when
tracking is on-the-fly. Although different tracking strategies
have tried various types of traditional models for sample gen-
eration[15], the descriptive capability of those online sample
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is still far from sufficient for object characteristic represen-
tation.

In order to exploit more descriptive training samples, nowa-
days, deep learning models, e.g. convolutional neural net-
work (CNN) [16], have been successfully applied in a va-
riety of audio and visual tasks such as speech recognition
and image classification, and obtain a remarkable progress.
But due to the requirement of a large number of training
data and high computational cost, most of those studies
approached their tasks with off-line learning process as pre-
sented in some recently proposed works [14, 11, 7]. Wang
et al. [14] proposed an online tracking strategy based on a
compact image representation learned from an off-line pre-
trained deep neural network which requires large amounts
of auxiliary images. Similarly, Hong et al. [7] carried out the
learning of discriminative saliency using a CNN, but still de-
manded a pre-trained model. Different with [14] and [7], Li
et al. [11] proposed a variation of CNN with truncated struc-
tural loss to construct an online tracker and showed promis-
ing performance. But it mainly focused on model reforming
of CNN for online learning, and the sample generation prob-
lem is not addressed, which may lead to tracking failure in
complicated scenarios. Thus, how to utilize the advantage
of deep learning to generate more representative samples is
a challenging problem in online tracking tasks, and this is
also a motivation of this study.

Sample labeling is another challenge to properly utilize a
CNN model as learning strategy for online tracking. This
is because CNN is prone to overfitting to recent samples
and is sensitive to mislabeled samples. Typically, a particle
filter is used for efficiently conducting online object track-
ing by simulating object state’s posterior with a finite set
of weighted particles. However, it is difficult for the parti-
cles being used to carry out a self-repair without any prior
knowledge when a specific error pattern arises. Such type
of error may be caused by an incorrect object’s interference
due to dramatic appearance change or overfitting problem
(e.g. CNN based appearance model). Therefore, an effective
re-sampling process over particle filter may benefit the label
assignment, providing more reliable labeled samples for the
learning of CNN model. This is another motivation leading
to this study.

In this work, we propose a robust online tracker by ex-
ploiting the strong learning capability of a CNN model with
particle filtering framework. An overview of our tracking
framework is shown in Fig. 1. The contributions of the pro-
posed work are three folds. Firstly, we carry out an at-
tempt by introducing a single convolutional neural network
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Figure 1: Our online tracking framework

for object appearance modeling and integrate it into par-
ticle filtering framework with online fashion. Secondly, a
novel re-sampling scheme is proposed over particles based
on the Metropolis-Hastings (MH) algorithm [5, 2] to obtain
a set of more reliable positive and negative samples, which
could conduct a more effective and robust training of CNN
based appearance model. Thirdly, the proposed re-sampling
method provides a way to apply a heuristic prior to reshape
the drawn particles and gains a better object state posterior
representation. Additionally, we apply an adaptive weighted
approach with samples to feed CNN and a “lazy” training
style is used.

The organization of the paper is as follows: Section 2
presents the single CNN architecture used in the proposed
tracking framework. Section 3 and Section 4 elaborate our
proposed Metropolis-Hastings based re-sampling method with
an online robust tracking using CNN. Section 5 shows ex-
perimental demonstration and Section 6 draws conclusions.

2. APPEARANCE MODELING WITH CNN
In the proposed tracking framework (Fig. 1), we construct

a single convolutional neural network (CNN) shown in Fig. 2,
as an appearance model for object description, which con-
sists of two convolutional layers with tanh as activation func-
tion and followed by max pooling operators. Then, there is
a fully connected layer followed by a softmax classifier. The
working mechanism of this model is: the input data is gen-
erated from gray-scale image and is locally normalized with
σ = 5. Then, the image patches are normalized to size
40×40. The first convolution layer contains 10 kernels with
size 3 × 3 followed by a max-pooling layer with size 2 × 2.
The second convolution layer contains 20 kernels with size
3× 3 as well as followed by a 2× 2 max-pooling operation.
The fully connected layer with size 500 is followed by a soft-
max classifier with cross-entropy loss function to produce
confidence for each input patch.

The CNN is initially trained well in the first frame and
is updated in a lazy manner only when the confidence of
estimated object is lower than an empirical threshold C =
0.9. In the updating phase, the training goal is to advance
the confidence of each positive and negative sample above C.
Our CNN model allows to accept weighted training samples
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Figure 2: CNN architecture

as inputs. Inspired by the spirit of boosting, the weight of
each sample is estimated according to the objective loss in
former iteration. The process is beneficial to promote CNN’s
updating speed.

3. PARTICLE FILTERING WITH METRO-
POLIS-HASTINGS RE-SAMPLING

Particle filter has been widely used to conduct online track-
ing within a Bayesian framework of which a prediction of
state x in time t is formulated as:

p(xt | y1:t−1) =

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1. (1)

The key of particle filter is efficiently propagating the poste-
rior p(xt | y1:t) using a finite set of N particles {xit} attached
with importance weights wit that can be estimated as:

wit = wit−1

p(yt | xit) · p(xit | xit−1)

q(xt | x1:t−1,y1:t)
. (2)

And importance distribution q(xt | x1:t−1,y1:t) is often sim-
plified to q(xt | xt−1) with first-order Markov assumption.

Unfortunately, the particle filter framework does not sup-
ply a mechanism in nature to self-repair the mode drift-
ing incurred by the accumulative error of observation model
p(yt | xit). The accumulative error is often caused by dra-
matic appearance change or the model’s over-fitting prob-
lem. In practice, a heuristic assumption holds: the prob-
ability distribution of object’s state should be a unimodal
Gaussian distribution P(x | y) = N (µ, σ2), of which we can
take advantage to rectify the particles. Inspired by this, we
propose a re-sampling method to reshape particles {wit, xit}
using a variation of Metropolis-Hastings algorithm.

3.1 Reshape Particles by Metropolis-Hastings
The Metropolis-Hastings algorithm [5, 2] is a Markov chain

Monte Carlo (MCMC) method for obtaining a sequence of
random samples from a probability distribution for which
direct sampling is difficult. A sketch of Metropolis-Hastings
algorithm is shown in Algorithm 1.

Algorithm 1 Metropolis-Hastings Algorithm

1: Randomly choose a starting value x0.
2: At iteration m, draw a candidate x̂ from a proposal dis-

tribution J(x̂ | xm−1).
3: Compute an acceptance ratio α (shown in Fig. 3).
4: Accept x̂ as xm with a probability min(α, 1), otherwise

xm = xm−1.
5: Repeat step 2-4 until M samples are got.

The core step of the Metropolis-Hastings algorithm is to
compute an Acceptance Ratio for m-th iteration as a fashion
in Eq. 3.

α =
p(x̂ | y) · J(xm−1 | x̂)

p(xm−1 | y) · J(x̂ | xm−1)
(3)

In them-th iteration, a sample candidate x̂ is generated by
a proposal distribution J(x̂ | xm−1). The sample candidate
x̂ will be accepted as the m-th sample xm with a probability
min(α, 1). In this work, the probability distribution we need
to simulate is exactly the state posterior p(xt | y1:t).

For each time t, we conduct an M iterations Metropolis-
Hastings sampling process over particles {wit, xit} by com-
puting a new Acceptance Ratio as:

α =
P(x̂t | y1:t) · J(xm−1

t | x̂t)
p(xm−1

t | y1:t) · J(x̂t | xm−1
t )

, (4)
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Figure 3: Reshaping posterior distribution

where P(x̂t | y1:t) is a Gaussian distribution that we want
the particles to approach as far as possible, and x̂t is a sam-
ple candidate proposed by the proposal distribution J(x̂t |
xm−1
t ) in time t. Fig. 3 shows us an illustration of this

method in 2D space. For each sample candidate x̂, when
it is situated in the neighborhood of the false object with
a high probability, it will get a small acceptance ratio α.
For another case, while a sample candidate is situated in
the neighborhood of the true object, the value of α shall ap-
proach to 1, which means a high probability to be accepted.

Throughout this process, the higher the probability of
particles belonging to a false object, the more heavily they
will be penalized via acceptance ratio. The shape of recti-
fied particles are more close to real posterior. Apart from
this, the acceptance ratio α brings an extra profit. Particles
with largest α are suggested as reliable positive samples,
and those with lowest α then should be taken as negative
samples which exactly identify some specific error patterns.
Training samples obtained through this process put more
focus on several notable error patterns and produce a more
robust appearance model.

4. APPROXIMATE ESTIMATION
In the previous section, we present a Metropolis-Hastings

based re-sampling method over particles to reshape a bet-
ter posterior, and suggest a set of representative training
samples at the same time. A remaining major problem is
how to estimate the unknown target Gaussian distribution
P(x | y). In this section, we propose an approximate esti-
mation algorithm, elaborated in Algorithm 2, to efficiently
estimate the target distribution over time. We leave out

Algorithm 2 top-down Breadth-first Segmentation

1: Init: Q ← ∅, F 1:N ← 0, flag ← 1, K ← 1
2: while ∃F i = 0 do
3: xi ← ∃i,∀j, Ci > Cj ∧ F i = 0 ∧ F j = 0
4: F i ← flag
5: ENQUEUE(Q, xi)
6: while Q 6= ∅ do
7: x̂← DEQUEUE(Q)

8: Xε = {xk | ∀k, ‖x̂− xk‖2 ≤ ε ∧ Ck ≤ Ĉ}
9: Fε ← flag

10: ENQUEUE(Q, Xε)
11: end while
12: SegK = {xk | ∀k, F k = flag}
13: K ← K + 1, flag ← flag + 1
14: end while

the time subscript for the sake of brevity. At time t, Algo-
rithm 2 is conducted over N particles {xi} associated with
confidence Ci estimated by a CNN based appearance model.
Q is a First-Come-First-Served(FCFS) queue and F is a flag

vector of length N , each of whose position is initialized as
0. This algorithm starts from an untagged particle x̂ with
global maximum confidence and performs a top-down FCFS
tagging process. In a ε-neighborhood of x̂, only particles
with lower confidence Ck are accepted to put into queue Q
and tagged with the same flag as x̂. Until the queue is empty,
a segmentation of particles will be available by tracing the
flag. The algorithm ends up with no more untagged par-
ticles left and K segments are eventually obtained. Please
note that these segments may intersect with each other be-
cause no constraint of F k = 0 is required in step 8. As
shown in Fig. 4, a diagrammatic example of segmentation
result is provided for better understanding. The right panel
of Fig. 4 gives an insight on the result of segmentation from
3D viewpoint.
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Figure 4: The top-down segmentation algorithm

Throughout this top-down segmentation process, we can
easily achieve a rectified estimation of object’s state in time
t as:

xestt = arg max
xk,i

max
ck,i
{ck,i × Sup(Segk)}, k ∈ [1,K] (5)

where Sup(Segk) is the size of support set of k-th segmen-
tation. This estimation is more robust than a typical esti-
mation method that selects the particle with highest confi-
dence. After that, the support set of the selected segmenta-
tion can be utilized to estimate the target Gaussian distri-
bution P(x | y).

5. EXPERIMENTS
Experiment settings: We evaluate our proposed tracker

with 20 video sequences from an online tracking benchmark [15]
which covers most challenging tracking scenarios such as
scale and illumination change, occlusion, fast movement, out
of plane rotation and background clutters. We compare
our method with 11 state-of-the-art tracking approaches:
CSK [6], CT [17], CXT [3], IVT [13], LSK [12], MIL [1],
SCM [18], Struck [4], TLD [8], VTD [9] and VTS [10]. The
tracking performances are evaluated via average VOR (Pas-
cal VOC overlap ratio) and average CLE (center location
error) [15].

Comparison results: The elaborated quantitative re-
sults of VOR and CLE are shown in Table. 1, in which the
Top-3 results are highlighted in red, blue and cyan, respec-
tively. The overall satisfactory performance has confirmed
that the proposed method can achieve more robust tracking
in a variety of challenging scenarios with an average VOR
of 95.67%. In addition, success-rate curves and precision
curves are shown in Fig. 5 to demonstrate the general per-
formance of all the tracking methods. We have also con-
ducted the experiments based on CNN without Metropolis-
Hastings (MH) re-sampling process and the obtained VOR
has decreased to 66.47% in average, which demonstrated an



essential role of the MH re-sampling in our tracking frame-
work. The proposed work is mainly implemented by MAT-
LAB, and the average speed is 2-3 fps without any code
optimization.

Table 1: Comparison of 12 trackers on 20 video se-
quences. Upper panel: VOR, lower panel: CLE.

Ours CSK CT CXT IVT LSK MIL SCM TLD VTD VTS Struck

boy 99.3 84.2 68.8 49.7 32.6 99.7 38.5 43.9 93.5 78.6 79.6 97.5

car4 100 27.6 27.5 29.9 100 5.61 27.6 97.3 78.1 35.4 35.2 39.8

carDark 98.2 99.2 0.25 69.0 69.7 100 17.8 99.7 52.9 68.4 100 100

coke 85.9 73.9 9.28 59.1 13.1 16.2 11.7 33.7 28.9 13.7 14.4 94.2

crossing 100 31.7 98.3 34.2 24.2 11.7 98.3 100 51.7 41.7 40.0 94.2

david 92.4 23.6 42.7 83.4 79.4 58.6 22.9 91.3 97.0 67.7 73.0 23.6

deer 100 100 4.23 91.5 2.82 33.8 12.7 2.82 73.2 4.23 4.23 100

dudek 94.3 94.7 85.2 92.4 96.8 92.7 85.7 97.6 84.2 100 99.6 98.0

faceocc1 100 100 85.4 77.1 97.5 40.8 76.5 100 83.4 92.5 88.3 100

fish 100 4.20 88.9 100 100 33.2 38.7 86.3 96.2 64.3 97.9 100

girl 96.8 39.8 17.8 64.2 18.6 34.4 29.4 88.2 76.4 65.2 52.6 98.0

jumping 99.4 4.79 0.64 28.8 9.90 6.39 47.6 12.1 84.7 11.2 15.7 79.9

mhyang 100 100 73.0 100 100 100 38.9 99.7 89.3 94.8 97.0 100

mntBike 100 100 17.1 28.1 98.2 90.4 57.5 96.1 25.9 100 99.6 85.5

singer1 100 29.6 24.8 32.2 48.1 19.7 27.6 100 99.1 43.0 42.5 29.9

singer2 87.7 3.55 1.09 3.83 3.83 4.10 47.5 16.4 3.01 45.1 39.1 3.55

sylvester 83.6 71.7 82.8 74.7 67.6 26.3 54.6 88.6 92.8 80.4 80.7 92.9

trellis 95.3 59.1 35.0 80.8 30.9 90.7 24.4 85.4 47.3 50.1 49.0 78.4

walking2 100 38.8 38.4 39.8 100 48.6 38.0 100 34.0 40.2 40.4 43.4

woman 80.6 24.5 15.9 20.6 18.4 18.9 18.8 85.8 16.6 18.1 17.1 93.5

boy 2.23 20.1 9.03 7.39 91.3 2.24 12.8 51.0 4.49 7.57 7.27 3.84

car4 2.84 19.1 86.0 58.1 2.15 66.6 50.8 4.27 13.6 37.0 36.7 8.69

carDark 1.17 3.23 119 16.5 8.43 1.29 43.5 1.30 27.5 16.5 2.87 0.95

coke 14.4 13.6 40.5 25.7 83.0 55.0 46.7 56.8 25.1 68.7 62.5 12.1

crossing 1.76 8.96 3.56 23.4 2.36 54.8 3.18 1.57 24.3 26.1 43.1 2.81

david 5.64 17.7 10.5 6.05 4.82 12.0 16.9 4.34 5.12 11.6 10.2 42.8

deer 4.56 4.97 246 6.75 183 98.8 101 104 6.26 135 220 5.27

dudek 14.7 13.4 26.5 12.8 9.62 14.6 17.7 10.8 18.1 10.3 9.85 11.4

faceocc1 12.7 11.9 25.8 25.3 18.4 30.4 29.9 13.0 27.4 20.2 21.3 18.8

fish 4.19 41.2 10.7 6.25 5.67 50.8 24.1 8.54 6.57 16.8 7.21 3.40

girl 3.68 19.3 18.9 11.0 22.5 29.3 13.7 2.60 9.79 8.60 13.0 2.57

jumping 3.94 86.0 47.7 9.99 61.6 74.6 9.99 65.9 5.94 41.4 40.1 6.55

mhyang 2.39 3.61 13.3 3.97 1.87 3.43 20.4 2.41 9.51 4.36 4.07 2.59

mntBike 7.72 6.51 214 179 7.66 11.5 73.0 10.6 209 9.78 9.67 8.63

singer1 4.32 14.0 15.5 11.4 11.3 20.8 16.4 2.72 7.99 4.19 5.35 14.5

singer2 10.3 185 127 164 175 149 22.5 114 8.47 43.7 72.5 174

sylvester 13.2 9.92 8.56 14.8 34.2 68.4 15.2 7.97 7.31 19.6 19.4 6.30

trellis 3.73 18.8 41.7 7.01 120 4.70 71.5 7.01 31.6 32.3 24.3 6.92

walking2 3.35 17.9 58.5 34.7 2.46 18.9 60.6 1.65 52.5 46.2 54.0 11.2

woman 9.64 207 114 72.5 177 131 125 7.88 93.9 119 121 4.17

6. CONCLUSIONS
In this paper, we propose a robust online tracking ap-

proach for general objects with a convolutional neural net-
work (CNN) based appearance model. To alleviate the prob-
lems incurred by direct use of CNN for online tracking task,
we present a re-sampling method over particles with a vari-
ation of Metropolis-Hastings algorithm to gain better pos-
teriors, and draw a set of more reliable training samples to
feed CNN at the same time. With this proposed method,
our tracker can employ CNN for online robust tracking task
effectively and efficiently. Compared with several state-of-
art trackers, the proposed tracker shows more satisfactory
performance in various challenging scenarios.
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