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Abstract
We propose a two-stage mask estimation approach to ro-
bust speaker verification (SV) in noise environments. We
consider a practical semi-blind SV scenario: the location
of the target speaker is fixed while the locations of al-
l interferers are unknown. In the first stage, we use a
dual-microphone and a semi-blind degenerate unmixing
estimation technique (DUET) to estimate an initial bina-
ry mask. In the second stage, we refine the mask based
on the time and frequency histograms of the initial mask.
As a result, only highly reliable time-frequency compo-
nents in the spectro-temporal features are kept for down-
stream verification. Experiments show that the proposed
approach is superior to a baseline MFCC approach and a
recent local SNR based mask estimation approach.
Index Terms: speaker verification, missing feature theo-
ry, dual-microphone, binary mask estimation

1. Introduction
Whereas speaker recognition systems can perform quite
robustly in clean acoustic conditions, their recognition
performance severely degrades in the presence of back-
ground noise. Recently, missing feature theory (MFT) [1]
has demonstrated great potential for improving the noise
robustness. According to the theory, recognition is per-
formed only on the reliable parts of the spectro-temporal
feature space and other unreliable parts contaminated by
background noise are discarded. Therefore, accurate es-
timation of a so-called binary mask (that decides the reli-
able and unreliable parts) is essential to the success of an
MFT-based recognizer. The mask can be estimated using
various criteria, e.g., local SNR criterion [2] and audi-
tory/perceptual criterion [3, 4]. The local SNR methods
offer simplicity by direct estimation of the noise spectra
from the contaminated speech signal. However, their per-
formance remains poor in non-stationary noise environ-
ments, especially when the interferers are speech from
others. Auditory approaches are able to use spatial in-
formation to assist reliability labeling and are thus more
effective in adverse conditions. Roman et. al. [3] use
binaural spatial cues to estimate the binary mask, assum-
ing that the locations of all sound sources, including the
target and the interferers, are known.

In this paper, we present a two-stage mask estima-
tion approach for robust speaker verification (SV). First-
ly, we use a dual-microphone and a semi-blind degen-
erate unmixing estimation technique (DUET) [5] to es-
timate an initial binary mask. Different from Roman’s
approach [3], our approach supposes that only the loca-
tion of the target speaker is fixed while the locations of
all interferers are unknown. We believe that this configu-
ration is much closer to a real-world SV application. For
example, in an access control application, users usually
locate at a relatively fixed area while interferers remain
unknown. Secondly, we perform mask refinement by re-
liable components selection based on the time and fre-
quency histograms of the initial mask. As a result, on-
ly the highly reliable time-frequency (T-F) components
in the spectral features are kept for downstream speaker
verification. Experiments demonstrate that the proposed
approach is superior to a baseline MFCC approach and a
recent local SNR based mask estimation approach [2].

2. System Overview
Contaminated speech signal is first picked up by a dual
microphone. Short-time Fourier transform (STFT) is then
used to obtain time-frequency (T-F) representation, i.e.,
Xi(t, f), of the recorded signal. Here, i, t and f denote
microphone index (i = 1, 2), time frame and frequen-
cy bin index, respectively. Then in each frame, Xi(t, f)
is accumulated within K frequency subbands to obtain a
K-dimension speaker spectral feature vector xt. We al-
so use Xi(t, f) to extract a spatial feature vector O(t, f)
and to estimate a binary mask Mb(t, k), as described in
Section 3. As introduced in Section 4, the mask is further
refined to Mr

b (t, k). Finally, the binary mask is applied
to xt to identify the reliable components xr

t that are used
for downstream speaker verification.

We approximate the speaker-dependent distribution
of spectral features by Gaussian mixture models (GMM-
s). In the speaker verification phase, we use marginal-
ization [2] to deal with the missing features. The reliable
feature sub-vector xr

t is used to estimate the likelihood of
the speaker identityλ. The probability density becomes

p(xt|λ) =
M∑

m=1

wm

∏
xti∈xr

t

p(xti|µmi, σ
2
mi), (1)



where wm is the weight of the mth Gaussian mixture,
xti refers to the ith component in xr

t , µmi and σ2
mi are

their corresponding mean and variance vectors in the mth
Gaussian mixture, respectively.

A well-trained universal background model (UBM)
λubm is used to normalize the decision score. Finally, the
decision likelihood is

P (λc|X) =
1

T

T∑
t=1

log
p(xt|λc)

p(xt|λubm)
(2)

where λc denotes the claimed speaker model and X =
(x1,x1, · · · ,xT ) is the speaker feature set for a test ut-
terance.

3. Initial Binary Mask Estimation
We use normalized inter-microphone phase differences
(IPD) and inter-microphone amplitude differences (IAD)
to represent the spatial difference of the two signals
picked up by the dual-microphone. For each T-F unit
Xi(t, f), the spatial information can be represented by
a 3-dimension spatial feature vector O(t, f) as [5]

{arg[X2(f, t)/X1(f, t)]

2πfdc−1
,
[X1(f, t)]

A(f, t)
,
[X2(f, t)]

A(f, t)
} (3)

where A(f, t) =
√∑

i |Xi(f, t)|2, d represents the dis-
tance between the two microphones, and c denotes the
sound speed.

Since the location of the target is fixed, a target s-
patial GMM model Ωtar can be trained off-line using the
EM algorithm. We use Gaussian white noise to train Ωtar

due to its wideband and uniform density. In online speak-
er verification when the target speech and the interfering
noise are co-present, the spatial distribution will change
because of the presence of new sound sources. As the
location of the noise is unknown, we use online GMM
adaptation to estimate the corrupted spatial model Ωin,
by several EM iterations of the target spatial model Ωtar.
Hence, the binary mask is obtained by likelihood com-
parison:

M(t, f) =

{
1, p(Ωtar|O(t, f)) > p(Ωin|O(t, f))
0, otherwise.

(4)
Then we transform the estimated mask from frequency
bins into frequency subbands by

Mb(t, k) = I(
∑

M(t,f)∈Bk

M(t, f)), (5)

where Bk represents the kth subband, I(·) denotes an in-
dicator function, i.e., I(x) = 1 if x > δ and I(x) = 0
otherwise. δ is set empirically to one third of the number
of bins within each subband.

4. Mask Refinement
The initial binary mask estimated from acoustic and s-
patial features contains many errors due to reverberation
and misclassification. It is known that speech is sparse
in the T-F domain, which means its energy is concentrat-
ed only in a few T-F regions. Hence, those isolated bins
with weak power are possible unreliable. On the other
hand, for some types of color noise, their energy is con-
centrated continuously in several subbands, which makes
the surviving bins within those subbands are also unre-
liable. Therefore, we refine the initial mask by keeping
those T-F portions with high confidence.

4.1. Refining Matrix

Firstly, two histograms are produced from the estimated
initial binary mask. The frequency histogram Hk(t) rep-
resents the number of ‘1’s in Mb(t, k) of frame t:

Hk(t) =
K∑

k=1

Mb(t, k). (6)

The time histogram Ht(k) represents the number of
‘1’s in Mb(t, k) of each subband k. We normalize the
time histogram by the frame number:

Ht(k) =
1

T

T∑
t=1

Mb(t, k). (7)

Figure 1 shows an example of the mask refinement.
From Figure 1(a), we can clearly see that both the time
and frequency histogram curves are unevenly distributed.

To keep only the high confidence regions, we define
a refining matrix:

R(t, k) =

{
1, Hk(t) > θHk

& Ht(k) > θHt

0, otherwise
(8)

where θHk
and θHt represent the decision thresholds in

frequency and time domain, respectively. The refined
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Figure 1: An example showing mask refinement for a
speech utterance. (a) Initial mask Mb(t, k) and time and
frequency histograms – Ht(k) and Hk(t); (b) the refining
matrix R(t, k); (c) the refined mask Mr

b (t, k).



mask can be achieved as follows:

Mr
b (t, k) = Mb(t, k) ·R(t, k), (9)

where ‘·’ is the binary AND operator. The refined bina-
ry mask Mr

b (t, k) is used for missing data recognition.
Figure 1(b) and (c) show the refining matrix and the final
mask.

4.2. Decision Thresholds

For decision of θHt , we want to preserve the bands with
high reliability. Hence for an utterance, Ht(k) is sorted
in descending order and θHt is set so that the compo-
nents with N highest values are preserved. For decision
of θHk

, with the same purpose, we adopt a sliding win-
dow as does in the minimum statistics [6] in noise re-
duction. We set θHk

dynamically by moving average of
Hk(t) within the sliding window [t− L, t):

θHk
(t) =

1

L

t−1∑
i=t−L

Hk(t) (10)

where L is the length of the window.

5. Experiments
5.1. Experiment Setup

We record the experimental data in a quite room as shown
in Fig. 2. Two omni-directional microphones are de-
ployed in parallel with 4cm spacing. Thirteen high-
fidelity loudspeakers are located at 13 different positions
to simulate a target speaker and 12 interfering sources.
The clean speech from AURORA-2 corpus [7] is played
through the loudspeaker at the target position. The noise
is played through the loudspeaker at the 12 interfering po-
sitions. Noise type includes female speech, pure music,
car noise and white noise. These noise signals are played
at the 12 positions with the same average sound level, re-
spectively, and are mixed with the target speech signal at
different SNR levels.

We use the AURORA-2 “TRAIN” set for UBM train-
ing. The clean speech from all 110 speakers in the
“TRAIN” set is played by the loudspeaker at the target
position and recorded by the dual microphone. We use
the speech recorded by Microphone L to train the UBM
with 64 Gaussian components. All 104 speakers from the
“TESTA” set (52 males and 52 females) are used as the
target speakers for SV experiments. For each speaker,
30 of the 36 utterances are used to obtain his/her target
model by adapting the UBM and the rest 6 are used for
testing. We run 6 rounds of SV test at each SNR. At
each round, the testing utterances (104× 6) are played at
the target position and mixed with noise randomly chosen
from one interfering position. The SV evaluation results
are averaged over the 6 rounds.
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Figure 2: Experimental data collection in a quite room.

The speech signal is 8KHz, 16bit and the speech
frame is 20ms with 10ms shift in feature extraction. The
length of STFT is 256. We use 24 subbands (i.e.,K=24)
equally distributed in linear frequency scale [8] and the
raw speaker acoustic feature vector consists of 24 conven-
tional linear frequency log power spectra components.

For comparison purposes, we build a baseline SV sys-
tem using a 39-dimensional feature vector consisting of
13 static MFCC coefficients, including energy, and first
and second order temporal derivatives. Cepstral mean
normalization (CMN) is applied for improving robust-
ness. We also compare our approach with another miss-
ing data recognizer that uses a recent mask estimation ap-
proach, namely MCMM [2]. In order to see the upper
bound performance, we run a recognizer using an ideal
binary mask (IBM). The IBM is estimated regarding that
the prior recordings of the target speech and the interfer-
ing noise are known. As a sanity check, we also imple-
ment our mask refinement method to MCMM and IBM.
In the experiments, N is 21, and L is 40.

5.2. Results

The experimental results in terms of equal error rate
(EER) are summarized in Table 1. It is expected that
the MCMM method shows inferior performance as com-
pared with the MFCC baseline in the presence of speech
interferer. This is because MCMM uses local SNR cri-
terion that fails to perform in non-stationary noise en-
vironments. We notice that the proposed mask estima-
tion methods (Mb and Mr

b ) show substantial performance
gain as compared with MCMM in the presence of speech
interferer, pure music and car noise under most SNRs.
However, in the white noise corrupted environment, the
performance of our method is worse than that of MCMM.
This is because the white noise is wideband and unifor-
m density that affect all the frequency bands of speech,
resulting in more estimation errors in the binary mask.
Moreover, we can clearly see the effectiveness of mask
refinement (Mr

b ). It can bring EER reduction to MCMM,
Mb and IBM in most noise conditions. The refined mask
Mr

b only under-performs in speech interferer conditions.
This may be explained as follows. The interfering speech
has the same property of sparseness as the target speech.



Table 1: Experimental results in terms of EERs.

Noise Methods
SNR

Type (dB) MFCC baseline MCMM [2] MCMM+Mr
b Proposed Mb Proposed Mr

b IBM IBM+Mr
b

5 10.76 13.73 11.67 5.99 6.62 2.92 3.78
female 10 6.84 8.08 7.88 5.35 5.24 2.36 2.83
speech 15 5.10 6.3 6.94 5.2 5.13 2.2 2.83

5 23.01 21.46 20.77 14.51 13.88 8.51 7.51
pure 10 17.67 11.67 11.04 9.53 8.83 5.67 4.73

music 15 10.44 7.88 7.17 6.76 6.15 3.78 3.15
5 32.82 14.82 14.45 17.66 17.01 7.57 6.94

car 10 24.17 10.24 9.85 9.56 8.98 6.32 5.34
noise 15 13.05 7.58 7.24 6.62 6.09 3.78 3.06

5 40.71 36.08 35.77 47.88 47.31 15.47 14.56
white 10 33.67 19.87 19.35 36.59 35.63 15.15 13.51
noise 15 21.89 11.35 10.86 15.77 15.15 8.3 7.82
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(b) pure music (SNR: 10dB)
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(c) car noise (SNR: 10dB)
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Figure 3: DET curves before and after mask refinement.

As a result, mask refinement produces more serious er-
rors that result in weak discrimination of reliable speak-
er feature components. The DET curves in Figure 3 al-
so show mask refinement achieves performance improve-
ment in music, car noise and white noise conditions.

6. Conclusions
We have proposed a two-stage mask estimation approach
to MFT-based robust speaker verification. The proposed
approach first estimates a raw mask by a semi-blind
DUET method under the dual-microphone setup. A mask
refinement strategy is used to preserve the highly reliable
T-F components in the spectral features for missing data
recognition. Experiments have demonstrated the effec-
tiveness of the proposed approach. In future work, we
plan to use a soft masking decision strategy in missing
data recognition.

7. Acknowledgements
This work was supported by the National Natural
Science Foundation of China (61175018, 60901077),
the Natural Science Basic Research Plan of Shaanx-
i Province (2011JM8009), the Key Science and Tech-
nology Program of Shaanxi Province (2011KJXX29),
the Doctoral Program of Higher Education in China
(20096102120044) and Fok Ying Tung Education Foun-
dation (131059).

8. References
[1] M. Cooke, P. Green, L. Josifovski, and A. Vizinho, “Robust

automatic speech recognition with missing and unreliable
acoustic data,” Speech Communication, vol. 34(3), pp. 267–
285, 2001.

[2] T. May, S. van de Par, and A. Kohlrausch, “Noise-robust s-
peaker recognition combining missing data techniques and
universal background modeling,” IEEE Trans. on Audio,
Speech, and Language Processing, vol. 20(1), pp. 108–121,
2011.

[3] N. Roman and D. Wang, “Speech segregation based on
sound localization,” J. Acoust. Soc. Am, vol. 114, pp. 2236–
2252, 2003.

[4] S. Harding, J. Barker, and G. Brown, “Mask estimation for
missing data speech recognition based on statistics of bin-
aural interaction,” IEEE Trans. on Audio, Speech, and Lan-
guage Processing, vol. 14(1), pp. 58–67, 2006.

[5] Z.-H. Fu, L. Xie, and D.-M. Jiang, “Dual-microphone noise
reduction based on semi-blind DUET,” in Proc. of ICSLP,
Taiwan, 2010.

[6] R. Martin, “Noise power spectral density estimation based
on optimal smoothing and minimum statistics,” IEEE Tran-
s. on Audio, Speech, and Language Processing, vol. 9(5),
pp. 504–512, 2001.

[7] H. Hirsch and D.Pearce, “The aurora experimental frame-
work for the performance evaluation of speech recognition
systems under noisy conditions,” in Proc. of ISCA ASR2000
Workshop, Beijing, China, 2000, pp. 181–188.

[8] X. Lu and J. Dang, “An investigation of dependencies be-
tween frequency components and speaker characteristics
for text-independent speaker identification,” Speech Com-
munication, vol. 50(4), pp. 312–322, 2008.


