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A coupled HMM approach to video-realistic speech animation�
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Abstract

We propose a coupled hidden Markov model (CHMM) approach to video-realistic speech animation, which realizes realistic facial animations
driven by speaker independent continuous speech. Different from hidden Markov model (HMM)-based animation approaches that use a single-
state chain, we use CHMMs to explicitly model the subtle characteristics of audio–visual speech, e.g., the asynchrony, temporal dependency
(synchrony), and different speech classes between the two modalities. We derive an expectation maximization (EM)-based A/V conversion
algorithm for the CHMMs, which converts acoustic speech into decent facial animation parameters. We also present a video-realistic speech
animation system. The system transforms the facial animation parameters to a mouth animation sequence, refines the animation with a
performance refinement process, and finally stitches the animated mouth with a background facial sequence seamlessly. We have compared the
animation performance of the CHMM with the HMMs, the multi-stream HMMs and the factorial HMMs both objectively and subjectively.
Results show that the CHMMs achieve superior animation performance. The ph-vi-CHMM system, which adopts different state variables
(phoneme states and viseme states) in the audio and visual modalities, performs the best. The proposed approach indicates that explicitly
modelling audio–visual speech is promising for speech animation.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Speech-driven talking faces are playing an increasingly in-
dispensable role in multimedia applications such as computer
games, online virtual characters, video telephony, and other in-
teractive human–machine interfaces. For example, talking faces
can provide visual speech perceptual information for hearing-
impaired people to better communicate with machines through
lipreading [1]. Recent studies have shown that the trust and
attention of humans towards machines can be significantly in-
creased by 30% if humans are interacting with a human face
instead of text only [2]. Current Internet videophones can trans-
mit videos, but due to bandwidth limitations and network con-
gestion, facial motion accompanied with audio often appears
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jerky since many frames are lost during transmissions. There-
fore, a video-realistic speech-driven talking face may provide
a good alteration.

The essential problem of speech-driven talking faces is
speech animation—synthesizing speech-related facial anima-
tion from audio. Despite of decades of extensive research,
realistic speech animation still remains to be one of the chal-
lenging talks due to the variabilities of human speech, mostly
commonly the coarticulation phenomenon [3]. Various ap-
proaches have been proposed during the last decade, which
significantly improve the animation performance. Some ap-
proaches use a 3D mesh to define the head shape and map a
face texture to the mesh [4–6]. Others realize photo- or video-
realistic animation from recorded image sequences of face and
render facial movements directly at the image level [6–10].

Despite of different head models, according to the au-
dio/visual conversion method, speech animation can be catego-
rized into speech classes from audio and animation parameters
from audio [6]. In the former approaches, audio is first seg-
mented to a string of speech classes (e.g., phonemes) manually
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or automatically by a speech recognizer. Subsequently these
units are mapped simply to lip poses, ignoring dynamic fac-
tors such as speech rate and prosody. The latter approaches
derive animation parameters directly from speech acoustics,
where speech dynamics are preserved. During the last two
decades, machine learning methods, such as neural networks
[11], Gaussian mixture models (GMMs) and hidden Markov
models (HMMs) have been extensively used in the audio/visual
conversion.

In GMM-based approaches [12,13], Gaussian mixtures are
used to model the probability distribution of audio–visual data.
After the GMM is learned using the expectation maximization
(EM) algorithm and the audio–visual training data, the visual
parameters are mapped analytically from the audio. The uni-
versal mapping of the GMM ignores the context cues that are
inherent in speech. To utilize the context cues, a mapping can
be tailored to a specific linguistic unit, e.g., a word. Hence,
HMM-based approaches have been recently explored.

To the best of our knowledge, Yamamoto et al. [14] were the
first to introduce HMMs into speech animation, which has led
the way to some new developments [13,15–20]. Their approach,
namely Viterbi single-state approach, trained HMMs from au-
dio data, and aligned the corresponding animation parameters to
the HMM states. During the synthesis stage, an optimal HMM
state sequence is selected for a novel audio using the Viterbi
alignment algorithm [21]; and the visual parameters associated
with each state is retrieved. Such approaches produce jerky ani-
mations since the predicted visual parameter set for each frame
was an average of the Gaussian mixture components associated
with the current single state, and it was indirectly related to the
current audio input. In some other techniques, e.g., the mixture-
based HMM [13] and the remapping HMM in Voice Puppetry
[15], the visual output was made dependent not only on the
current state, but also the audio input, resulting in improved
performance. The mixture-based HMM technique [13] trained
joint audio–visual HMMs which encapsulate the synchroniza-
tion between the two modalities of speech. Recently, Aleksic
et al. [20] proposed a correlation-HMM system using MPEG-4
visual features, which integrated independently trained acous-
tic HMM and visual HMM, allowing for increased flexibility
in model topologies.

However, all the above methods heavily rely on the Viterbi
algorithm that lacks robustness to noise [17]. If speech is con-
taminated by ambient noise, the animation quality will suffer
greatly [15]. Moreover, the Viterbi sequence is deficient for
speech animation in that it represents only a small fraction of
the total probability mass, and many other slightly different
state sequences potentially have nearly equal likelihoods [22].

Moon et al. [23] proposed a hidden Markov model inver-
sion (HMMI) method for robust speech recognition. Choi et al.
[16,17] extended this method to audio–visual domain for speech
animation, in which audio and video were jointly modelled by
phoneme HMMs. They were able to generate animation param-
eters directly from the audio input by a conversion algorithm
considered as an inversion of EM-based parameter training. In
this way, they managed to avoid using the Viterbi algorithm,
and made use of all possible state sequences to represent a quite

large fraction of the total probability mass. More recently, Fu et
al. [22] have demonstrated that the HMMI method outperforms
the remapping HMMs [15] and the mixture-based HMMs [13]
on a common test bed.

The conventional one-chain HMMs do have limitations in de-
scribing audio–visual speech: (1) we know that due to the differ-
ence in discrimination abilities, audio speech and visual speech
can be categorized to different speech classes—phonemes and
visemes [24]. Therefore, the bimodal speech is better modelled
by different atoms explicitly. (2) speech production and percep-
tion are inherently coupled processes with both synchrony and
asynchrony between the audio and visual modalities [25]. In
previous HMM-based speech animations, the bimodal speech
is modelled by a single Markov chain, which cannot reflect the
above important facts.

The above two facts are important in audio–visual speech
recognition (AVSR) or automatic lipreading [26]. These facts
also affect the performance of the inverse problem (i.e., speech
animation) since human perception system is sensitive to arti-
facts induced by loss of synchrony or asynchrony. Therefore,
in order to make animation look more natural, it is necessary
to take these facts into consideration. In this paper, we propose
a coupled HMM (CHMM) approach to video-realistic speech
animation, in which we use CHMMs to model the above char-
acteristics of audio–visual speech.

In the following section, we describe the diagram of our
speech animation system. Section 3 presents the AV-CHMMs
used in our speech animation system, including our motiva-
tions, the model structures and the model training procedure.
Section 4 derives the EM-based A/V conversion algorithm for
the AV-CHMMs. Section 5 describes the audio-visual front-
end. Our facial animation unit is presented in Section 6. Sec-
tion 7 gives the comparative evaluations both objectively and
subjectively. Finally, conclusions and future work are given in
Section 8.

2. Speech animation system overview

Fig. 1 shows the block diagram of the proposed speech
animation system. The system is composed of two main
phases—the AV modelling phase (offline) and the speech-to-
video synthesis phase (online). The offline phase is used to
model the audio–visual speech as well as learn the correspon-
dences between the two modalities from the AV facial record-
ings. Given the AV models, the online synthesizer converts
acoustic audio to visual parameters (i.e., animation parameters)
and synthesizes facial animations from these parameters.

In the AV modelling phase, initially the audio and video
processing units extract representative features for audio and
video, respectively. The video processing unit also statistically
learns an appearance space of mouth articulation. Subse-
quently, we train AV models (AV-CHMMs) and build up the
correspondences between acoustic audio and visual articu-
lation from an audio–visual dataset (the JEWEL dataset) as
well as an audio-only speech corpus (the TIMIT corpus). We
use two datasets to establish audio–visual correspondences
from facial recordings of a subject, and also to learn audio
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Fig. 1. Diagram of the speech animation system.
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Fig. 2. Example of asynchrony between audio and visual speech. Up: speech waveform; middle: speech spectra; bottom: vertical mouth opening with phoneme
labels transcribed from audio.

distributions from various speakers to realize speaker indepen-
dent animation.

The speech-to-video synthesis phase processes a sequential
structure. After feature extraction, a new audio is fed into an
A/V converter, resulting in visual parameters. The A/V con-
verter adopts an EM-based conversion algorithm (described in
Section 4) which directly generates decent visual parameters
frame by frame. Finally, the facial animation unit resembles
framewise visual parameters to a mouth image sequence, and
stitches the animated mouth with a background facial sequence
(described in Section 6).

3. Coupled HMMs for AV modelling

3.1. Characteristics of bimodal speech

3.1.1. Asynchrony and synchrony
Asynchrony arises naturally both in audio–visual speech per-

ception and in speech production. From the speech production
point of view, it has been proven that usually visual speech
activity precedes the audio signal by as much as 120 ms [27],
which is close to the average duration of a phoneme. Lavagetto

[28] has shown that visible articulators (i.e., lips, tongue and
jaw), during uttering, start and complete their trajectories asyn-
chronously, resulting in both forward and backward coarticu-
lation with respect to the acoustic speech wave. Intuitively this
makes much sense, since articulators have to position them-
selves properly before and after the start and end of an acous-
tic utterance. This time interval is the well-known voice-on-set
time (VOT), which is defined as the time delay between when
a consonant is released and when voicing, the vibration of the
vocal cords, begins. The VOT is an important cue to the voic-
ing features in perceiving stop consonants, e.g., [p], [t], [k], [n],
[m]. Fig. 2 shows an example of the asynchrony between audio
speech and visual speech. From the comparison between the
speech waveform, the spectrum and the vertical mouth open-
ing scale, we can clearly see that obvious time intervals exist
between the audio signal and visual articulation (for example,
areas (1), (2) and (3)). On the other hand, audio speech and
visual speech are correlated since they are orginated from the
same articulation process, and thus need to be synchronized
within a time period.

From the speech perception point of view, we know that
sound and light travel at quite different speeds, and a 10 m
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Table 1
The 13 visemes mapped from 47 phonemes

Place of articulation Viseme Phoneme

Silence sip /sil/, /sp/

Lip rounding-based vowels lr1 /ao, /aa/, /ah/, /er/, /oy/, /aw/, /hh/
lr2 /uw/, /uh/, /ow/, /em/
lr3 /ae/, /eh/, /ey/, /ay/
lr4 /ih/, /iy/, /ax/, /axr/, /ix/

Alveolar semi-vowels as /l/, /el/, /r/, /y/
Alveolar fricatives af /s/, /z/
Alveolar al /t/, /d/, /n/, /en/
Palato Alveolar pa /sh/, /zh/, /ch/, /jh/
Bilabial bi /p/, /b/, /m/
Dental de /th/, /dh/
Labio-dental ld /f/, /v/
Velar ve /ng/, /k/, /g/, /w/

distance between the speaker and the listener will introduce
roughly a 30 ms delay in the audio channel. In addition,
McGrath and SummerLeld [29] found that an audio lead of
less than 80 ms or lag of less than 140 ms could not heavily
affect the speech perception ability. However, if the audio was
delayed by more than 160 ms, the perception ability will be
severely affected.

3.1.2. Speech classes for audio and video
We know that phoneme is the basic distinct atom of acoustic

speech that describes how speech conveys linguistic informa-
tion. In American English, usually 40–50 phonemes are used
according to the dialects. Not all phonemes are visually distinct
since human vision system only can observe the visible articu-
lators (such as lips, mouth and teeth) that describe the post for-
mulation of uttering. However, phonemes can be clustered into
the so-called visemes. Visemes are defined as the smallest vis-
ibly distinguishable atoms of speech. There are many acoustic
sounds that are visually ambiguous, which are grouped into the
same viseme class. For example, the bailable phonemes [p], [b]
and [m] are all produced by a visually distinguishable closed
mouth; and they fall into one viseme class. There is therefore a
many-to-one mapping between phonemes and visemes. Table
1 shows a phoneme-to-viseme mapping table according to the
place of articulation [30]. By the same token, there are many
visemes that are acoustically ambiguous. An example of this
can be seen in the acoustic domain when people use so-called
phonetic alphabets, e.g., ‘B as in boy’ or ‘D as in Deta’ to
reduce ambiguity for spelling. These auditory confusions are
usually distinguishable in the visual modality. This highlights
the bimodal nature of speech, and the fact that to properly un-
derstand what is being said information is required from both
modalities.

Therefore, it is more appropriate and intuitive to model the
audio and visual modalities using phonemes and visemes, re-
spectively. Especially for speech animation which intends to
derive visual articulation from acoustic audio, explicitly design
of audio–visual interactions are fairly important.

3.2. DBNs for audio–visual speech

In previous HMM-based speech animation approaches,
single-stream HMMs are used to model audio–visual
speech with tight inter-modal synchronization. This kind of
model structure does not accord with the characteristics of
audio–visual speech as indicated in Section 3.1, and a richer
model structure intuitively produces better speech anima-
tion performance. During the last decade, a more general
framework, dynamic Bayesian networks (DBNs) [31,32], has
emerged as a more powerful and flexible tool to model complex
stochastic processes. DBNs generalize HMMs by representing
hidden states as state variables, and allow the states to have
complicated inter-dependencies. The conventional HMM is
just a special case with only one state variable in a time slice.
Fig. 3(a) shows the repeating structure of HMM described in
a DBN framework.

Among DBNs, several model structures such as multi-
stream HMMs (MSHMMs) [33], factorial HMMs (FHMMs)
[34], and CHMMs [35] have been introduced to model the
bimodal speech in AVSR, resulting in improved recognition
performance as compared to HMMs. Especially, CHMMs have
shown superior performance [36]. Fig. 3(b)–(d) shows their
model structures suitable for describing audio–visual speech.
However, these richer structures have not been introduced into
speech animation yet. In this paper, we propose a CHMM
approach to realize video-realistic speech animation.

3.3. Coupled HMMs

The CHMMs can be considered as a generalization of the
conventional single-stream HMMs suitable for modelling time
series in a large variety of multimedia applications that integrate
multiple streams of data. The CHMMs were first introduced by
Brand et al. [35] and were successfully used for hand gestures
recognition [35], 3D surface inspection [37], speech prosody
recognition [38] and AVSR [36].

A CHMM can be seen as a collection of multiple HMM
chains coupled through cross-time and cross-chain conditional
probabilities. Fig. 3(d) shows the specific structure of a two-
chain CHMM in audio–visual speech modelling, namely AV-
CHMM, where two hidden Markov chains are incorporated to
describe the audio and visual modalities, respectively. There are
two variables for each chain in each time frame—the hidden
state variable qs

t , s ∈ {a, v} and the observation variable os
t , s ∈

{a, v}. A state variable at frame t is dependent on its two parents
in previous frame t −1, which describes the temporal coupling
relationship between the two streams. This structure models
the asynchrony of the audio and visual modalities while still
preserving their natural correlation over time (i.e., synchrony).
This model but also allows us to use different modality atoms
(in terms of state variables) in audio and video. Intuitively, this
model may better capture the interprocess influences between
the audio and visual modalities of speech.

The conditional probability distributions (CPDs) associ-
ated with variables for each frame describe the following
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Fig. 3. DBN models for audio–visual speech (a: HMM, b: MSHMM, c: FHMM and d: CHMM).
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Fig. 4. Training procedure of AV-CHMMs.

probabilities:

• P(os
t |qs

t ), s ∈ {a, v}: observation probability and
• P(qs

t |qt−1), s ∈ {a, v}: state transition probability,

where the ‘meta-state’ qt−1=[qa
t−1, q

v
t−1], and for initialization,

P(qs
1|q0)=P(qs

1). The state transition probability is described
by a 3D table; and a continuous Gaussian mixture is associated
with each qs

t :

P(os
t |qs

t ) =
K∑

k=1

wqs
t kN(os

t , �qs
t k, �qs

t k). (1)

Correspondingly, the joint probability distribution (JPD) among
this DBN structure is

P(Oav|q) =
∏
t

∏
s

P (qs
t |qt−1)P (os

t |qs
t ). (2)

The training of the model parameters (i.e., CPDs) can be
performed using the EM algorithm. Although the topology of a
CHMM resembles that of an ordinary HMM, the EM training

of ordinary HMMs is not directly applicable. We derive the EM
algorithm for CHMM parameter training in Appendix A.

3.4. Training procedure for AV-CHMMs

Since our objective is to realize speech animation driven
by speaker independent continuous speech, we need AV facial
recordings as well as a large acoustic speech corpus. We use the
JEWEL audio–visual dataset together with the TIMIT speech
corpus to build the AV-CHMMs. Fig. 4 shows the diagram of
the training procedure.

The JEWEL audio–visual dataset [39] contains 524 record-
ings of one female speaker uttering sentences from the TIMIT
corpus. The training set is composed of 2 SA sentences and 450
SX sentences, and the testing set contains 50 SI sentences. An-
other 22 SI sentences are used as a small validation set. These
sentences have a good coverage of English phonetic contexts. In
the dataset, the speaker’s head-and-shoulder front view against
a white background is shot by a digital video cameracorder
in a studio environment, where synchronized audio and video
are recorded. For each of the sentences, the dataset provides a
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Fig. 5. Some snapshots from the JEWEL AV dataset.

speech waveform in Microsoft WAV format, a word-level tran-
scription file, and an MPEG-2 AVI video file time synchronized
with the speech waveform. Audio is acquired at a rate of 16 Hz,
and video is recorded at 25 frames/s in PAL format. In total,
the audio–visual recordings are about 2500 s in duration. Fig. 5
shows some snapshots from the dataset. To realize speech an-
imation, the mouth region of interest (ROI) is tracked by a
method described in Ref. [40].

Firstly, we use time-synchronized joint audio–visual features
extracted from the JEWEL training set (452 sentences) to train
the AV-CHMMs. This process learns the correspondences be-
tween the acoustic speech and visual articulation, and most im-
portantly, transition probabilities between the audio states and
visual states. The EM algorithm derived in Appendix A is used
to train the AV-CHMMs.

Secondly, we use the acoustic features extracted from the
TIMIT training set (4620 utterances from 630 speakers) as well
as the JEWEL training set to train the audio observation dis-
tributions (pdfs) extensively, while keeping the visual obser-
vation distributions (pdfs) and transition probabilities intact.
To do this, single-stream audio-HMMs (A-HMMs) and visual-
HMMs (V-HMMs) are separated from the AV-CHMMs. The
A- and V-HMMs directly adopt the observation emission prob-
abilities from the corresponding streams of AV-CHMMs, and
the new state transition matrices are extracted from the 3D ta-
bles of AV-CHMMs. Subsequently, we train the A-HMMs us-
ing the large training set (the JEWEL audio and TIMIT audio)
via the EM algorithm for conventional HMMs [21]. This pro-
cess intends to achieve good distribution estimations of acoustic
signal from abundant audio samples collected from numerous
speakers. Finally, the A-HMMs and V-HMMs are re-combined
to AV-CHMMs, with newly trained audio distributions, former
visual observation distributions and the transition probabilities
from the AV-CHMMs.

4. EM-based A/V conversion on AV-CHMMs

Given the trained AV models, a simple, common A/V con-
version approach is to derive sub-phonemic transcriptions from

a novel audio via the Viterbi algorithm, and the visual Gaus-
sian mean associated with the current state label is used as the
visual parameter vector of the current frame. As indicated in
Section 1, this approach has a major defect in that the facial
animation performance relies heavily on the Viterbi state se-
quence which is not robust to acoustic degradation, e.g., addi-
tive noise. Choi’s HMMI approach [17] has managed to avoid
the Viterbi algorithm, which uses maximum likelihood (ML)
criterion to generate visual parameters and catches a large frac-
tion of the total probability mass by considering all the HMM
states at each time slice.

4.1. The algorithm

Based on Choi’s work [17], we derive the specific A/V con-
version algorithm for the AV-CHMMs under the ML criterion.
As the inversion of ML-based model parameter training, the
conversion algorithm searches for the missing visual parame-
ters (observations) by maximizing the likelihood of visual pa-
rameters given the trained CHMMs and the audio input. We
use the EM algorithm to solve the ML problem. According
to the EM algorithm [41], the optimal visual parameters Ôv

can be found by iteratively maximizing the auxiliary function
Q(�, �, Oa, Ov, Ov′

), i.e.,

Ôv = arg max
Ov′ ∈Ov

Q(�, �, Oa, Ov, Ov′
), (3)

where Ov and Ov′
denote the old and new visual parameter

sequences in the visual parameter space Ov , respectively.
Given the audio-visual observation sequence, Oav = [Oa,

Ov], the audio visual state sequence, q = [qa, qv], and a well-
trained AV model set �, according to the Markov property of
independent relationships between variables, the complete-data
likelihood, or the JPD (see Eq. (2)), can be formed as

P(Oa, Ov, q|�) =
T∏

t=1

[P(qa
t |qt−1)

× P(qv
t |qt−1)P (oa

t |qa
t )P (ov

t |qv
t )]. (4)
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Fig. 6. The EM-based A/V conversion algorithm on AV-CHMMs.

The auxiliary function can be further expressed as

Q(�, �, Oa, Ov, Ov′
)

=
∑

q

P(Oa, Ov, q|�) log P(Oa, Ov′
, q|�)

=
∑

q

P(Oa, Ov, q|�)

{
T∑

t=1

log P(qa
t |qt−1)

+
T∑

t=1

log P(qv
t |qt−1)

+
T∑

t=1

log P(oa
t |qa

t )

+
T∑

t=1

log P(ov′
t |qv

t )

}
. (5)

By taking the derivative of Q(�, �, Ov, Ov, Ov′
) with respect

to ov′
t,i (the ith coefficient of ov′

t ) and equaling it to be zero, we
get

�Q

�ov′
t,i

=
∑

q

P(Oa, Ov, q|�)
�

�ov′
t,i

[log P(ov′
t |qv

t )]

=
∑
qt

P (Oa, Ov, qt |�)
�

�ov′
t,i

[log P(ov′
t |qv

t )] = 0, (6)

where qt denotes the possible value vector of state variables
at time t . The derivative � log P(ov′

t |qv
t )/�ov′

t,i is calculated by
differentiating Eq. (1):

� log P(ov′
t |qv

t )

�ov′
t,i

=
K∑

k=1

wqv
t k(2�)−P v/2|�qv

t k|−1/2

×
⎡⎣ P v∑

j=1

�qv
t k(i, j)(�qv

t k(j) − ov′
t,j )

⎤⎦ , (7)

where P v is the dimensionality of ov′
t , and ov′

t = [ov′
t,i]P

v

i=1.
�qv

t k(j) is the j th coefficient of �qv
t k; �qv

t k(i, j) denotes the

(i, j)th element of the inverse covariance matrix �−1
qv
t k

. If the
covariance matrix is diagonal, Eq. (7) can be simplified to

� log P(ov′
t |qv

t )

�ov′
t,i

=
k∑

k=1

wqv
t k(2�)−P v/2|�qv

t k|−1/2 · �qv
t k(i, i)

× (�qv
t k(i) − ov′

t,i ). (8)

Using Eqs. (6) and (8), we get

ov′
t,i =

∑
qt

∑
k�t (q

v
t , k)wqv

t k�qv
t k(i, i)�qv

t k(i)∑
qt

∑
k�t (q

v
t , k)wqv

t k�qv
t k(i, i)

, (9)

where the state occupation probability �t (q
v
t , k) is calculated

using Eq. (A.15) in Appendix A.
Similarly for MSHMMs and FHMMs shown in Fig. 3, the

reestimation formulas can be derived as

ov′
t,i =

∑
qt

∑
k�t (qt , k)wqt k�

v
qt k

(i, i)�v
qt k

(i)∑
qt

∑
k�t (qt , k)wqt k�

v
qt k

(i, i)
, (10)

and

ov′
t,i =

∑
qt

∑
k�t (qt , k)wqt k�

v
qt k

(i, i)�v
qt k

(i)∑
qt

∑
k�t (qt , k)wqt k�

v
qt k

(i, i)
. (11)

Fig. 6 summarizes the EM-based A/V conversion algorithm
on AV-CHMMs. We use the Gaussian mixture centers of each
states from the Viterbi sequence as the initial visual parameter
values at the start of the prediction iterations. The Viterbi state
sequence is obtained from an audio-only speech recognition
engine.

4.2. Discussions

As pointed out in Ref. [17], the conversion algorithm moves
the visual parameters ov′

t to maximize the likelihood of these
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Fig. 7. Predicted visual parameter trajectories vs. the ground truth.

visual parameters for fixed mixture means, which retains the
original distributions of visual parameters. The weighted aver-
ages of Gaussian mixture means of all possible states are used
as the predicted visual parameters in each time frame t . Com-
pared with the Viterbi single-state approach which considers the
probability distribution of a single state at each time slice, the
visual parameters predicted by the EM-based algorithm repre-
sent quite a large fraction of the total probability mass, making
the estimation more robust to speech degradations. Even when
the speech is not contaminated, the EM-based approach also
shows superior performance due to the ML criterion. Fig. 7
shows two snippets of the predicted visual parameter time tra-
jectories (the EM-based and Viterbi single-state methods) com-
pared with the ground truth (actual parameters extracted from
original facial image sequences). It illustrates the advantages
of the EM-based method over the Viterbi single-state method,
where the curve predicted by the EM-based approach match
the actual parameters more closely.

In the HMMI method, audio–visual speech is modelled using
a single Markov chain with tight inter-modal synchronization,
where the audio and visual data are described by joint observa-
tion distributions of same speech classes and lack inter-modal
interactions. This is not consistent with the facts of speech pro-
duction and perception. In contrast, the AV-CHMMs are able to
model the bimodal speech more accurately by mimicking the
interprocess influences between the audio and visual modalities
of speech. For example, audio and visual data are described by
separate observation distributions of separate speech classes,
and audio visual interactions are modelled by inter-modal-class
transitions. Consequently, the weighted averages of Gaussian
means (Eq. (9)) may become more appropriate than that of the
HMMI.

5. Audio visual front-end

Prior to AV modelling, front-end processing is performed to
achieve representative features of audio and visual speech (see
Fig. 1). The speech signal, sampled at 16 kHz mono, is pro-
cessed in frames of 25 ms with a 15 ms overlapping (rate =
100 Hz). We first pre-emphasize speech frames with an FIR
filter (H(z) = 1 − az−1, a = 0.97), and weight them with
a Hamming window to avoid spectral distortions. After pre-

processing, we extract Mel Frequency Cepstral Coefficients
(MFCCs) [42] as the acoustic features. Each acoustic feature
vector consists of 12 MFCCs, the energy term, and the corre-
sponding velocity and acceleration derivatives. The dimension-
ality of acoustic feature vector is 39 for each frame.

Since we are targeting video-realistic speech anima-
tion, we use one of the most effective feature extraction
methods—principal components analysis (PCA) [43] to get the
visual features that capture mouth appearance in a low dimen-
sion. In the PCA implementation, the correlation matrix R of
mouth images is first computed. Subsequently, R is diagonal-
ized as R=A�AT , where A=[a1, . . . , ad ], and ai is the eigen-
vectors of R, � is a diagonal matrix containing the eigenvalues
of R. The eigenvectors are called eigenmouths or eigenlips,
representing the statistical basis of mouth appearance space.

A mouth image I can be approximately represented by a lin-
ear combination of the r (r>d) most significant eigen mouths
ai (i = 1, . . . , r), that is,

I = Ī + Ãg, (12)

where Ã = [a1, . . . , ar ] and Ī is the mean mouth image. The
weighting coefficient vector g is the visual feature vector that
we look for, which can be computed by

g = ÃT(I − Ī). (13)

Fig. 8 depicts the 30 most significant eigenmouth images of the
red channel calculated on the 980 representative mouth images
from the JEWEL AV dataset, which preserves 96.7% of the
statistical variance of mouth appearance. Totally, we use a set
of 90 visual features (30 for each color channel) for each frame,
and the feature vector is up-sampled to 100 frames/s to meet
the audio feature rate (100 Hz).

6. Facial animation unit

The facial animation unit first smoothes the predicted visual
parameters by a moving average filter (3 frames wide) to re-
move jitters, and then augments the fine details of the mouth
appearance using a performance refinement process. Subse-
quently, mouth animation is generated from the visual param-
eters by the PCA expansion process [43]. Finally, we overlay
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Fig. 8. The 30 most significant eigenmouth images of the red channel calculated on the JEWEL AV dataset. The images are ordered in descending significance
from left to right and top to bottom.

the synthesized mouth animation onto a background sequence
which contains natural head and eye movements.

6.1. Performance refinement

Although the PCA-based visual parameters have already rep-
resented the most significant statistical variances of the speech-
related mouth appearance, the mouth images resembled by PCA
expansion still lack fine details due to the low dimensionality
of the visual parameters (90 dimensions). Introducing more vi-
sual parameters will result in more prediction errors. Therefore,
we propose a performance refinement process to improve the
realism of the animation. We select a set of 500 typical nor-
malized mouth images from the JEWEL dataset, which covers
almost all possible articulation-related mouth appearances. We
then save their full-dimension PCA coefficients (980 dimen-
sions) of each color channel (R,G and B) to a candidate set G:

G = {g1, g2, . . . , g500}, g = [gr , gd ], (14)

where r =1: 30, d =31: 980 and g denotes the PCA coefficient
vector for a color channel. We choose the visual parameters ĝd

t

as the fine detail augments of frame t using the following MSE
criterion:

ĝd
t = arg min

gd
j

||ôv
t − gr

j ||, j = 1, 2, . . . , 500, (15)

where ôv
t denotes the estimated visual parameters. Therefore,

the full-dimension visual parameter vector will be gt =[ôv
t , ĝd

t ].
The mouth image It at frame t for a specific color channel is
resembled by the PCA expansion [43]:

It = Īt + Agt . (16)

Fig. 9 shows some snapshots of the synthesized mouth images
before (up) and after (bottom) the performance refinement pro-
cess. Appearance details have been rewritten after the refine-

ment. Finally, we add Gaussian noise to the synthesized image
to regain the camera image sensing noise. The noise is esti-
mated from the original facial images.

6.2. Overlaying onto a background sequence

To realize facial animation, we overlay the synthesized mouth
animation onto a background sequence with natural head and
eye movements. Since our system exhibits only movement in
the mouth region, ‘zombie’-like artifacts can be easily detected
if we directly stitch the animated mouth with the background
facial sequence. Therefore, we add natural jaw (lower face)
movements by a jaw selection process. Since we find that the
jaw downward action is approximately in proportion to the en-
ergy term of the acoustic signal, we associate an appropriate
jaw mask from a jaw candidates set to each synthesized mouth
image according to this proportion relationship. The jaw can-
didates set contains lower face image masks with different jaw
movements selected from the JEWEL dataset. The synthesized
mouth, the corresponding jaw and the face background video
snippet are stitched together by the Poisson cloning technique
[44] according to the manually labelled stitching positions.

7. Experiments

7.1. Experiment setup

We have compared the CHMMs with three models—HMMs,
MSHMMs and FHMMs in performance of speech animation.
The tested systems are summarized in Table 2, where C(•)

denotes the cardinality of state variables. The systems named
‘ph-∗’ adopt only phoneme states for both audio and visual
modalities, while the systems named ‘ph-vi-∗’ adopt phonemes
state for audio and viseme states for video. Each phoneme
(viseme) is modelled by five states, and the 13 visemes are



2334 L. Xie, Z.-Q. Liu / Pattern Recognition 40 (2007) 2325–2340

Fig. 9. Snapshots of the synthesized mouth images before (up) and after (bottom) the performance refinement process.

Table 2
The tested systems

System Model structure Conversion algorithm

ph-HMM
qt describes phoneme state, C(qt ) = 47 × 5

HMMI [16]
ph-MSHMM
ph-CHMM

qs
t , s ∈ {a, v} describes phoneme state, C(qs

t ) = 47 × 5
EM-based A/V conversion

ph-FHMM
ph-vi-CHMM qa

t describes phoneme state, C(qa
t ) = 47 × 5,

ph-vi-FHMM qv
t describes viseme state, C(qv

t ) = 13 × 5

mapped from the 47 phonemes using Table 1. We performed an
iterative mixture splitting scheme [42] to achieve the optimal
Gaussian mixture numbers (i.e., K) using the JEWEL validation
data set. All the systems were built using the same diagram
illustrated in Fig. 1, except that the AV model training and the
A/V conversion were carried out, respectively, for the four kinds
of AV models. The ph-HMM system uses the HMMI [17] as
the A/V conversion algorithm, while the other systems use the
EM-based A/V conversion algorithm described in Section 4.

After empirical testing on the JEWEL validation data set, we
chose the following constraints on state transitions to model
the causality in speech generation and to decrease the model
computation complexity. For HMMs and MSHMMs,

P(qt |qt−1) = 0 if qt /∈ {qt−1, qt−1 + 1}. (17)

For FHMMs,

P(qs
t |qs

t−1) = 0 if qs
t /∈ {qs

t−1, q
s
t−1 + 1}. (18)

The above two constraints were set to ensure the state non-
skip policy. For CHMMs, a further constraint on audio–visual
asynchrony and synchrony was imposed:

P(qs
t |qt−1) = 0 if

{
qs
t /∈ {qs

t−1, q
s
t−1 + 1},

|qs
t − qs

′
t |�2, s

′ �= s,
(19)

which ensured that only one-state asynchrony relationship was
allowed between the audio and visual modalities.

Fig. 10 shows the convergence property of the EM-based
A/V conversion algorithm with the above constraints. These
curves were calculated using the ph-vi-CHMM system. Usually,
the algorithm converges to a local minimum within a very few
iterations.

7.2. Objective evaluations

We objectively evaluated the prediction performance on the
JEWEL testing set using two quantitative measurements: the
average mean square error (AMSE) � and the average correla-
tion coefficient (ACC) 	, defined by

� = 1

T

T∑
t=1

||ôv
t − ov

t ||, (20)

	 = 1

T · P v

T∑
t=1

P v∑
i=1

(ov
t,i − �ov

i
)(ôv

t,i − �ôv
i
)

�ov
i
�ôv

i

, (21)

where ov
t and ôv

t denote the actual and predicted visual param-
eter vectors; ov

t,i and ôv
t,i are their ith coefficients, respectively.

� and � are their mean and standard deviation. T is the total
number of frames in the testing set. Table 3 shows the evalua-
tion results.

From Table 3 we can see that the ph-MSHMM system
achieves similar performance with the ph-HMM system. The
two systems using FHMMs (ph-FHMM and ph-vi-FHMM)
give improved performance compared with the ph-HMM and
ph-MSHMM system. However, the introduction of visemes
does not show great improvement for FHMMs. The CHMMs
outperform all the other models tested. Especially, the ph-
vi-CHMM system shows superior performance in predicting
visual parameters with the lowest AMSE of 6.911 and the
highest ACC of 0.696.

The FHMMs do not lead to good performance probably
because the modelling advantage offered by FHMMs can only
become evident if less correlated features are used. However,
audio speech and visual speech are highly correlated since they
are originated from the same articulation source. Moreover,
independent state variables cannot embed appropriate (a)syn-
chrony relationships between the audio and video. Instead, the
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Fig. 10. Iteration curves of the EM-based A/V conversion algorithm for eight utterances from the JEWEL testing set.

Table 3
Objective evaluation results in terms of average MSE (�) and average corre-
lation coefficient (	)

System AMSE (�) ACC (	)

ph-HMM 8.043 0.581
ph-MSHMM 8.050 0.576
ph-FHMM 7.778 0.593
ph-vi-FHMM 7.679 0.608
ph-CHMM 7.239 0.630
ph-vi-CHMM 6.911 0.696

CHMMs encapsulate the coupling relationship and the
(a)synchrony between the two building blocks of speech by an
appropriate structure and the imposed constraints, leading to
better predicting performance. Fig. 11 shows some examples
of the predicted and original trajectories for the first visual pa-
rameter (the first PCA coefficient for the red channel) for the
six testing sentences: (1) maybe it is taking longer to get things
squared away than the bankers expected; (2) the staff deserves
a lot of credit working down here under real obstacles; (3) to
create such a lamp, order a wired pedestal from any lamp shop;
(4) some observers speculated that this might be his revenge on
his home town; (5) nobody really expects to evacuate; (6) why
do we need bigger and better bombs? These trajectories were
generated by the ph-vi-CHMM system using the EM-based
A/V conversion algorithm. We can clearly observe that the
predicted visual parameters match the original ones very well.

7.3. Subjective evaluations

Since speech animation is to provide a natural human–
machine communication method, subjective evaluations that
human observers provide feedback on animation qualities are
more appropriate than objective measurements. We first per-
formed experiments on the JEWEL testing set (50 sentences)

to evaluate the speaker dependent animation performance, and
then carried out experiments on an AV subjective testing set
collected from the Internet containing speech utterances from
various speakers to evaluate the speaker independent animation
performance. In both subjective evaluations, we synthesized
the mouth video from audio using the predicted visual param-
eters (90 PCA coefficients in frames) as well as their detail
augments achieved from the performance refinement process
described in Section 6.1. As a benchmark, we also cropped the
mouth sequences from the original JEWEL testing videos, and
enrolled them in the speaker-dependent test.

We made only evaluations on the synthesized mouth region.
Cosatto et al. [6] has suggested that for any subjective tests,
it is important to separate the different factors influencing the
perceived quality of speech. If the evaluations are performed on
the whole face, the results might be affected by the motions and
appearances from other facial parts other than the articulated
mouth. Therefore, we eliminated other factors such as head
movements and eye blinks, which enabled us to focus on the
quality of articulation.

The AV subjective testing set contains 30 AV snippets with
lengths from 15 s to 100 s containing contents about news re-
ports, distinguished speeches, weather reports and interviews,
etc. The synthesized mouth videos were overlaid onto the orig-
inal videos as the subjective evaluation set (Fig. 12), which
simulated a potential application for the hearing-impaired peo-
ple perceiving speech by lipreading when watching Internet
AV contents. A realistic, auxiliary, animated mouth can help
hearing-impaired people to better understand what linguistic
information the AV contents convey.

A group of 10 relatively inexperienced viewers were involved
to rank the performance of the speech animation in terms of
naturalness of the mouth matching the audio accompanied. We
used a 5-point assessment, where 5 means ‘excellent’, and 1
means ‘bad’. To get impartial evaluations, the videos (synthe-
sized and real) were randomly named and mixed together prior
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Fig. 11. Predicted (solid line) vs. actual (dotted line) trajectories for the first coefficient of visual parameters for six testing utterances.

Fig. 12. Snapshots of the synthesized speech animation overlaid onto the videos from the AV subjective testing set.

to the testing session. We used four specific criteria (smooth-
ness, closure, protrusion, turning) as well as the overall perfor-
mance in the assessments. The four criteria are known as the
most important factors that viewers are sensitive to. Tables 4
and 5 summarize the mean opinion score (MOS) calculated on
the two testing sets, respectively.

The subjective evaluation results in Tables 4 and 5 clearly
show that, among all the tested models, the ph-vi-CHMM sys-

tem demonstrates the best performances in both speaker depen-
dent and independent tests with relative overall MOS improve-
ments of 22.47% (speaker dependent) and 22.37% (speaker
independent) as compared to the ph-HMM system. The ph-
MSHMM system exhibits no obvious improvement. This is be-
cause the MSHMM structure in Fig. 3(b) still uses a single-
state variable to synchronously model the audio and video, and
the only difference is that the audio and visual observations
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Fig. 13. MOS curves. Left: speaker-dependent test, right: speaker-independent test.

Fig. 14. Snapshots from the synthesized mouth animation for the utterance ‘This is Tony Blair, the prime minister of United Kingdom. I’m glad to be able to
speak to you today’.

are modelled by separate distributions. The FHMMs are also
capable of effectively improving the subjective performance,
but they are not as good as the CHMMs. This is understand-
able since the FHMMs lack inter-modal coupling dependencies.
Generally speaking, introducing asynchrony does help a lot in
the animation performance, while using different speech atoms
for the two speech modalities can achieve further improve-
ments. Comparing Table 4 with Table 5, we can observe that
the performance of speaker-independent test is worse than that
of speaker-dependent test. This is due to the following two ma-
jor reasons: (1) speaker-dependent models can catch a specific
subject’s acoustic distributions more accurately than speaker
independent models. (2) Many sentences in the AV subjective

test set have much longer durations than that of the JEWEL
testing set, and the defects can be easily detected within a rel-
ative long time.

Fig. 13 plots the MOS curves for different criteria. We can
observe that richer structures for audio–visual speech have the
greatest influence on the closure criterion, but have little influ-
ence on the smoothness and protrusion criteria. It unveils that
the improvement of animation performance when using richer
structures (like ph-vi-CHMMs) mainly comes from good pre-
diction of closures.

The subjective results indicate that the CHMMs are more
promising for speech animation. Fig. 14 demonstrates a mouth
animation sequence synthesized by the ph-vi-CHMM system
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Table 4
Subjective evaluation results on the JEWEL testing set

System MOS

S C P T O %RI

ph-HMM 3.95 2.77 3.04 3.30 3.16 —
ph-MSHMM 3.93 2.81 3.07 3.30 3.18 0.63
ph-FHMM 3.95 3.30 3.12 3.48 3.31 4.75
ph-vi-FHMM 3.93 3.47 3.16 3.51 3.39 7.28
ph-CHMM 4.02 3.59 3.13 3.55 3.67 16.14
ph-vi-CHMM 4.10 3.88 3.22 3.73 3.87 22.47
Real Recordings 4.76 4.70 4.51 4.80 4.71 49.05

S:smoothness, C:closure, P:protrusion, T:turning, O:overall and %RI:relative
percentage MOS improvement as compared to ph-HMM.

Table 5
Subjective evaluation results on the AV subjective testing set

MOS

System S C P T O %RI

ph-HMM 3.62 2.54 2.96 3.17 2.95 —
ph-MSHMM 3.66 2.51 3.01 3.17 2.95 0
ph-FHMM 3.71 3.14 3.07 3.39 3.17 7.46
ph-vi-FHMM 3.80 3.20 3.03 3.44 3.20 8.47
ph-CHMM 3.88 3.27 3.11 3.50 3.55 20.34
ph-vi-CHMM 3.97 3.41 3.20 3.68 3.61 22.37

S: smoothness, C: closure, P: protrusion, T: turning, O: overall %RI: relative
percentage MOS improvement as compared to ph-HMM.

for the first 6 s of an AV snippet named ‘DL-Blair.avi’ from the
AV subjective testing set, where the mouth snapshots and their
frame numbers are shown on the top and bottom, respectively.

8. Conclusions and future work

In this paper, we have proposed a CHMM approach to video-
realistic speech animation. Motivated by the subtle relation-
ships between audio speech and mouth movement, we use the
CHMMs to explicitly model the synchrony, asynchrony, tem-
poral coupling and different speech classes between the audio
speech and visual speech. The CHMMs use two Markov chains
to model the audio–visual asynchrony, while still preserving
the natural correlations (i.e., synchrony) through inter-modal
dependencies.

We have derived an EM-based A/V conversion algorithm
on the CHMMs. Given an audio input and the trained AV-
CHMMs, the algorithm outputs the optimal visual parameters
(animation parameters) by maximizing the likelihood of these
parameters under the ML criterion. We have proposed a fa-
cial animation system which learns AV-CHMMs and a mouth
appearance space from AV recordings of a female subject as
well as the TIMIT speech corpus. Based on the EM-based A/V
conversion algorithm and the performance refinement process,
the system is able to convert speaker-independent continuous
speech to video-realistic facial animation.

We have compared the CHMMs with HMMs, MSHMMs,
and FHMMs both objectively and subjectively. Evaluation re-

sults show that the CHMM system using phonemes and visemes
(ph-vi-CHMM) demonstrates superior performance among all
the tested systems. The promising result indicates that to ani-
mate speech more naturally, it is necessary to explicitly describe
the temporal relationships between the two building blocks of
speech, namely audio modality and visual modality.

Since explicit modelling of speech is more robust to speech
degradation and training–testing mismatch, we are currently
trying to realize speech animation under adverse acoustic con-
ditions, e.g., ambient noise and microphone mismatch.

Appendix A. Parameter training for CHMMs

We derive the EM parameter training for CHMMs. Since
the initial parameters are essential in achieving good model
estimates, we use the Viterbi algorithm in the E Step to get
reasonable initial values of model parameters [36].

E Step: The forward probability


t (qt ) = P(qt |oav
1:t ) (A.1)

and the backward probability

�t (qt ) = P(oav
t+1:T |qt ) (A.2)

are computed using the frontier algorithm [32] that is a general
inference algorithm for DBNs. Note that the forward probability
is defined differently with the conventional HMM.

The frontier algorithm sweeps a Markov blanket across the
model, first forward then backward, ensuring the frontier (de-
noted by F) d-separates the past (the left of the frontier de-
noted by L) from the future (the right of the frontier denoted
by R) [32].

Forward pass: The frontier initially contains all the nodes in
frame t − 1:

Ft−1,0 = 
t−1(qt−1) = P(qt−1|oav
1:t−1). (A.3)

First we add nodes qt to the frontier since all their parents are
already in the frontier. To do this, we multiply in their CPDs
P(qt |qt−1)

Ft−1,1 = P(qt−1:t |oav
1:t−1)

= P(qt |qt−1) · Ft−1,0, (A.4)

where P(qt |qt−1)=∏
sP (qs

t |qt−1). Second we remove qt−1 by
marginalizing it out because all their children are in the frontier

Ft−1,2 = P(qt |oav
1:t−1) =

∑
qt−1

Ft−1,1. (A.5)

Finally we add oav
t to the frontier since all their parents are

already in the frontier:

Ft−1,3 = P(qt |oav
1:t )

= P(oav
t |qt ) · Ft−1,2

=Ft,0 = 
t (qt ), (A.6)

where P(oav
t |qt ) = ∏

sP (os
t |qs

t ).



L. Xie, Z.-Q. Liu / Pattern Recognition 40 (2007) 2325–2340 2339

Backward pass: The backward pass advances the frontier
from frame t to t − 1 by adding and removing nodes in the op-
posite order of the forward pass. The frontier initially contains
all the nodes in frame t :

Ft,0 = �t (qt ) = P(oav
t+1:T |qt ). (A.7)

First we remove oav
t :

Ft,1 = P(oav
t :T |qt ) = P(oav

t |qt ) · Ft,0. (A.8)

Second we add qt−1:

Ft,2 = P(oav
t :T |qt−1:t ) = P(oav

t :T |qt ) = Ft,1. (A.9)

Then we remove qt :

Ft,3 = P(oav
t :T |qt−1)

=
∑
qt

P (qt , oav
t :T |qt−1)

=
∑
qt

P (qt |qt−1)P (oav
t :T |qt−1:t )

=
∑
qt

P (qt |qt−1) · Ft,2

= Ft−1,0 = �t−1(qt−1). (A.10)

The probability of the lth observation sequence Oav
l with length

Tl is computed as

Pl = 
l,Tl
(ql,Tl

) = �l,1(ql,1). (A.11)

M Step: The forward and backward probabilities obtained
in the E step are used to reestimate the following parameters:

�qs
t k =

∑
l (1/Pl)

∑
t�l,t (q

s
t , k)os

l,t∑
l (1/Pl)

∑
t�l,t (q

s
t , k)

, (A.12)

�qs
t k

=
∑

l (1/Pl)
∑

t�l,t (q
s
t , k)(os

l,t − �qs
t k)(o

s
l,t − �qs

t k)
T∑

l (1/Pl)
∑

t�l,t (q
s
t , k)

, (A.13)

wqs
t k =

∑
l (1/Pl)

∑
t�l,t (q

s
t , k)∑

l (1/Pl)
∑

t

∑
k′�l,t (q

s
t , k

′)
, (A.14)

where

�l,t (q
s
t , k) =

∑
q′

t

l,t (q′

t )�l,t (q
′
t )∑

qt

l,t (qt )�l,t (qt )

× wqs
t kN(os

l,t , �qs
t k, �qs

t k)∑
k′wqs

t k′N(os
l,t , �qs

t k′ , �qs
t k′)

(A.15)

is called the state occupation probability; and q′
t can be any

state vector such that qs
t ∈ q′

t .
The state transition probabilities P(qs

t = is |qt−1 = j) can be
estimated by

P(is |j)
=

∑
l (1/Pl)

∑
i
∑

t
l,t (j)P (i|j)P (oav
l,t+1|i)�l,t+1(i)∑

l (1/Pl)
∑

t
l,t (j)�l,t (j)
, (A.16)

where P(i|j) = ∏
sP (is |j), and vectors i and j can be any state

vectors such that is ∈ i and j s ∈ j.
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