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Abstract

We present a mathematically rigorous framework for mod-
eling the statistical behavior of lexical chains for automatic
story segmentation of broadcast news audio. Lexical chains
were first proposed in [1] to connect related terms within a story,
as an embodiment of lexical cohesion. The vocabulary within a
story tends to be cohesive, while a change in the vocabulary dis-
tribution tends to signify a topic shift that occurs across a story
boundary. Previous work focused on the concept and nature of
lexical chains but performed story segmentation based on ar-
bitrary thresholding. This work proposes the use of the log-
normal distribution to capture the statistical behavior of lexical
chains, together with data-driven parameter selection for lexical
chain formation. Experimentation based on the TDT-2 Man-
darin Corpus shows that the proposed statistical model leads
to better story segmentation, where the F1-measure increased
from 0.468 to 0.641.

Index Terms: story segmentation, spoken document retrieval,
Chinese

1. Introduction

Story segmentation is the task of segmenting a text into distinc-
tive units known as stories, each of which is coherent within it-
self. It is a prerequisite for a wide range of speech and language
information retrieval tasks, namely topic tracking, clustering,
indexing and retrieval. In particular, broadcast news, which is
delivered in continuous video/audio streams, needs segmenta-
tion before information can be retrieved. Segmentation done
manually requires human segmenters to watch/listen through
the whole video/audio stream, which takes so huge an amount
of time that makes it an intractable task. To perform story seg-
mentation, there are three categories of cues available: lexical
cues from transcriptions, prosodic cues from the audio stream
and video cues such as anchor face and color histograms.
Among the three types of cues, lexical cues are the most
generic since they can work on text and multimedia sources.
The main approaches include word cohesiveness [2], use of cue
phrases [3] and Hidden Markov Models [4]. We focus on an ap-
proach based on lexical chaining, that embodies word cohesive-
ness[1]. A lexical chain links up related words in a textual docu-
ment. Intuitively, the vocabulary used in the same story is more
cohesive, while a shift in vocabulary can be observed across
a story boundary. Consequently most lexical chains should be
embedded within a story and few chains straddle a story bound-
ary. Taking advantage of this feature one can perform story
segmentation. [1] proposed using lexical chains computed by a
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thesaurus to determine textual structure. Lexical chaining was
further studied by Stokes [5], who incorporates a comprehen-
sive set of semantic relationships for story segmentation. How-
ever, Stoke reveals that it is “counterintuitive and disappoint-
ing” that employing more semantic relationships has a negative
effect on the performance of segmentation, owing to noise in-
curred by additional semantic relationships. In this work, we
decide to build lexical chains based on word repetitions only.
Repetitions, according to Stokes, exhibit the best performance
for story segmentation.

Stokes’ work discovers boundaries by chaining up terms
and finding points where the count of chain starts and ends
(known as boundary strength) achieves local maxima. A num-
ber of parameters including the maximum chaining distance be-
tween related terms and the boundary strength threshold under
which a hypothesized boundary is discarded are fixed at some
values determined by manual observations. The values are not
determined in a rigorous manner and do not guarantee optimal-
ity across different corpora. Our work extends Stokes’ work
by defining a statistically robust parameter determination pro-
cedure.

2. Corpus

We experiment with the TDT-2 Mandarin Corpus,' which con-
tains about 46 hours of Voice of America (VOA) Mandarin Chi-
nese broadcast news from February 1998 to June 1998. The
audio files are accompanied with textual transcripts from the
Dragon Automatic Speech Recognizer and metadata manually
marked story boundaries. In the corpus there are two main types
of news programs — (a) the long programs are about one hour
in duration, (b) the short programs are five to ten minutes long.
Our analysis shows that the mean story length of long programs
is different from that of short programs. Hence we estimate
distribution parameters and perform boundary discovery sepa-
rately.

We divide the corpus into three portions: a half as training
set for determining probability distribution parameters, a quar-
ter as development set for obtaining a priori information about
number of boundaries in each type of program and the remain-
ing quarter as testing set for final evaluation. We allocate large
share as training data set to ensure adequacy for parameter es-
timation relating to the lexical chains. To ensure uniformity
of data, we maintain the same fraction of long and short sto-
ries across the three sets. In evaluating the segmentation per-
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formance, we consider a detected story boundary as correct if
it lies within a fifteen-second window on each side of a hand-
marked true boundary. This is the standard tolerance defined in
the TDT-2 tasks.

3. Parameter Estimation for Maximum
Chaining Distance

Lexical chains aim to connect related terms within a story. How-
ever, some terms in a news story may re-appear in another story.
Hence it is necessary to impose a maximum chaining distance ¢
beyond which no lexical chains are formed. If ¢ is too long, we
may have many lexical chains spanning across two or more sto-
ries. On the other hand, if ¢ is too short, repeating terms remain
disconnected. St.Onge and Hirst [6] and Stokes [5] imposed a
fixed ¢ by manual observation. This tends to be a bit arbitrary
for experimentation. Hence we devise a data-driven method to
estimate an appropriate value for ¢. First we define a “link”
to be bonding of two terms adjacent in a chain. A correct link
is one whose endpoints lie within the same story. An incorrect
link is one whose endpoints lie in different stories. We vary ¢
from zero seconds to the maximum program length of the train-
ing set. For each parameter value, we compute the following
based on the training set:

correct links captured with ¢

recall = — - -
correct links in perfect link formation

)]

correct links captured with ¢
all links captured with ¢

(@)

We also compute the F1-measure, i.e., the harmonic mean
of recall and precision, for each ¢ value. The value achiev-
ing highest F1-measure is “the optimal ¢” for lexical chain
formation in the development set and test set. The ¢ is de-
termined separately for short programs (31.6sec) and long pro-
grams(130.9sec).

precision =

4. Statistical Behavior of Lexical Chains

A lexical chain links up repeating (related) terms where a chain
starts at the first appearance of an informative term and ends at
the last appearance of the term. Morris and Hirst [1] pointed
out that a high concentration of starting and/or ending points
of lexical chains is a good indication as a strong boundary. A
story boundary may be detected by locating temporal landmarks
before which many lexical chains end and after which many
chains start. We conceive that as a news story begins and pro-
gresses, we should observe a dwindling number of lexical chain
starts. As the story nears its end, we should observe a rising
number of lexical chain ends. This motivates us to search for
a probability model that can properly capture the statistical be-
havior of lexical chains. We believe that such a model is essen-
tial for improving the performance of automatic story segmenta-
tion using lexical chains. We propose the following mathematic
formulation:

B denotes the set of all story boundaries. At any time in-
stance ¢ in a news program, we define feature points C(t) as the

union of set of all starts following ¢ (F(¢) = {t1,t2,...,tnp }),
and all chain ends preceding ¢ (P(¢) = {t—1,t—2,...,t—np }):
C(t) =F(t)UP(t). 3

At a story boundary ¢y € B, we expect start chains F(to)
to spawn off from this point, and preceding to end chains P (to)
to taper off towards to. Also, the concentration of feature points
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C(to) in the vicinity of ¢o should be higher than the concentra-
tion of feature points farther apart. This inspires us to model the
arrival of start chains following ¢o by a probability distribution.
Likewise, we can model the arrival of end chains preceding %o
by a probability distribution. We assume that each feature point
is generated by an i.i.d. from a boundary point ¢o, governed by
a model w following a distribution D(-) and parameters 0 (i.e.,
P(ti|xB(t);w) ~ D(0)):

[P (to)l | F(to)l
P(C(to)Ix5(to); w):‘HP(Li\XB(tO);W)HP(tiIXB(tO)%WL

C))
where x 5 (to) is an indicator function showing the existence of
boundary at o, i.e., xB(to) = 1when to € B, and 0 otherwise.
Under this assumption, we should observe that the feature
points C(t) follow a probability distribution consistently at all
boundaries ¢ € B. This assumption is supported by our obser-
vation in section 4.1.

The existence of boundary can be estimated by maximum
likelihood estimation (MLE) under this generative assump-
tion. Alternatively, and more reasonably, maximum a posterior
(MAP) estimation is a more direct and straightforward measure
of the probability of boundary occurrence:

P(x5(to)|C(to);w) o< P(C(to)[x5(to);w) P (x5 (to);w)

(5)
In this paper, we assume that boundaries are equally likely
to occur anywhere in a program. The uniformity of prior
P(xB(to);w) implies the equivalence of MAP estimation and
MLE. The boundary discovery problem can therefore be re-
duced to finding points to whose likelihood of boundary exis-
tence P(C(to)|xB(to);w) given our observation of distribution
of feature points C(to) are at local maxima.

4.1. Selecting a Probability Distribution

In order to estimate the likelihood of boundary existence, we
must first find out how lexical chain starts/ends are “generated”
from a boundary P(C(to)|x 5 (t0);w). To address this problem,
we have to find a suitable probability distribution D(-) together
with the model parameters 8. We identified a list of candidate
distributions which are possibly in accord with the feature point
distribution. The list includes the two most common distribu-
tions:

e Single-sided Normal distribution

o Exponential distribution
and the following common continuous time distributions,
whose shapes are similar to that observed from the chain dis-
tribution data (Fig.1):

o Generalized Pareto distribution

e Gamma distribution

e Weibull distribution

e Log-normal distribution

Table 1 shows the log-likelihood that the training data is
generated from each of the candidate distributions. We see that
in most cases the log-normal distribution best fits the data. The
Weibull distribution obtains the next-to-best result in terms of
log-likelihood. Hence in the subsequent experiments we ap-

plied both the log-normal and Weibull distribution for compari-
son.
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Figure 1: This graphs shows an example of the distribution of
feature points (in this case, the feature points shown are the
chain starts following real boundaries in long programs) and the
hypothesized distributions (Normal, Exponential, Generalized
Pareto, Gamma, Weibull and Log-normal). The hypothesized
distributions are parameterized at their maximum likelihood es-
timation of the data. It is clear that normal and exponential dis-
tributions do not appear to fit the data well, while the other four
distributions have shapes more similar to the distribution of real
data. In this example, the best fit is by the log-normal distribu-
tion while the second best fit is by the Weibull distribution (data
shown in Table 1).

Table 1: MLE estimation of the data with common distributions.
Here P = J,. 5 P(t) and F = |J,c g F(1).

Log-likelihood (MLE)
Distribution | Short Programs Long Programs Sum
P | F P | F
Normal -16340 | -15866 | -61026 | -61198 | -154430
Exponential | -13861 | -12929 | -52188 | -51757 | -130735
Pareto -13821 | -12910 | -51568 | -50534 | -128833
Gamma -13636 | -12928 | -51783 | -50478 | -128825
Weibull -13690 | -12923 | -51637 | -50303 | -128553
Log-normal | -13612 | -12903 | -51536 | -50467 | -128518

5. Story Segmentation Methodology
5.1. Candidate Term Extraction

Lexical chain formation in Chinese spoken document tran-
scripts faces special challenges. First, Chinese does not have
explicit word delimiters. Word tokenization alone is a research
topic in and of itself. Second, news stories often contain a
large number of out-of-vocabulary (OOV) words, most of which
are proper nouns, e.g. person names and place/organization
names. Failing to identify these words may lead to errors in
chaining. To solve these two problems, we follow the algo-
rithms in [7]. We first perform word segmentation by match-
ing words in the CALLHOME lexicon with a greedy algorithm.
Since OOV words often appear in recognition transcriptions as
a series of single Chinese characters, we implemented an algo-
rithm to combine the singletons together, followed by a filter-
ing mechanism, to form candidate terms. We further applied
POS tagging to constrain the candidate terms to nouns, as they
are more indicative of the topic. The extracted candidate terms
are used to form lexical chains by following the procedures de-
scribed in sections 3 and 4.
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5.2. Boundary Hypothesis and Selection

To quantify the likelihood of boundary P(C(to)|x5(t0);w)
at a point to, we define boundary score S(to) by measuring
how much the occurrence of chains around ¢, matches the log-
normal distribution. The boundary score is defined by:

S(to) =Y sp@n(t:to)+ Y spsy)(tito), (6)

teP(to) teF (to)

depending on the choice of distribution D(-) and the parame-
ters 6. For example, if the distribution chosen is log-normal
LN (u,0), we have

o~ (nlt—to|—)?/(20%)
[t — to|lov2m

Likewise, for Weibull distribution W (k, ), we define

[t — to|
A

An example showing how the boundary score at a hypoth-
esized point ¢ is calculated is illustrated in Fig.2. We compute
the boundary score at each utterance boundary (short pause) and
plot the boundary score over time (Fig.3). This score needs to
be normalized before we can find boundaries based on the score.
The reason is that towards both ends of the news program, the
observation we can make is less than what we can observe in
the middle of the program. As a result the boundary scores near
both ends of the stories are lower and we need to boost the value
for fair scoring. In addition, in some parts of the news, the out-
put of speech recognizer makes so many errors that the number
of words available for training is reduced. In this case, fewer
feature points are available for calculating the boundary score.
To tackle these problems, we minus the moving average of the
boundary score from S(¢) to obtain normalized score Sy (t).
Boundaries are hypothesized when we observe local maxima
in Sy (t). We assume a priori knowledge of the total number
of story boundaries (n) in a program and pick the n-best can-
didates among the hypothesized boundaries. Fig.3 illustrates
the boundary scoring scheme. To find n for each type of pro-
gram, we perform grid search to find the value that achieves the
highest F1-measure among the 5-minute, 10-minute and 1-hour
programs.

@)

SLN(u,0) (T to) =

k

sSwk,n) (tto) = X

k-1 .
) o—(t=tal/N* gy

6. Experimental Results

We compare four approaches to automatic story segmentation
(see Table 2) (1) All utterance boundaries with a pause exceed-
ing a threshold tuned from the training and development set
are hypothesized as a story boundary; (2) A re-implementation
of Stokes’ scheme[5]; (3) Our proposed approach using the
log-normal distribution; (4) Our proposed approach using the
Weibull distribution. The results in terms of Fl-measure are
shown in Table 2.

Results indicate that the log-normal distribution achieves
the best segmentation performance overall. The Weibull distri-
bution achieves second-best, followed by the simple approach
of pause-based story segmentation. The use of pauses is partic-
ularly effective for short programs, because the duration of each
story is relatively short, it is unlikely that the anchor inserts a
long within-story break. Story boundaries can possibly be de-
tected by human behavior of inserting longer break across topic
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Figure 2: At each utterance boundary to, we apply equation
(6) to calculate the boundary score S(to). The figure shows an
example of how this score is calculated. Given the utterance
boundary ¢y, we can locate the feature points C(¢o). Each ¢t €
C(to) contributes an amount sp(.) (¢, to)to the boundary score
by equation (7) or (8). According to equation (6), the boundary
score at o is the sum of all these contributions.

Table 2: Results of experiment comparing different story seg-
mentation schemes

[ Scheme [ Long Prog. | Short Prog. | Overall |
(1) Pause only 0.372 0.777 0.590
(2) Stokes 0.445 0.505 0.468
(3) Proposed (Log-normal) 0.535 0.746 0.641
(4) Proposed (Weibull) 0.460 0.733 0.590

shift with high accuracy. However the performance declines
sharply for long programs, as it is impossible for the anchor to
speak uninterruptedly from the beginning to the end, thus longer
within-story pauses can be observed. This reduces the reliabil-
ity of using pauses to mark topic shift. The log-likelihood of
the distribution of feature points to the log-normal distribution
is higher than that to Weibull distribution in the training set, and
the segmentation result is in accord with this observation. We
conclude that using the proposed scheme with the log-normal
distribution provides the best story segmentation result.

7. Conclusions and Future Work

The paper has presented a scheme to perform Chinese broad-
cast news segmentation. By assuming the production of lexical
chain endpoints in a generative manner near story boundaries,
we have modeled the occurrence of lexical chain endpoints by
the log-normal distribution. We take advantage of this obser-
vation to determine story boundaries by maximum likelihood
estimation (MLE). Furthermore, we have identified the weak-
ness of previous works in determining parameters and we have
clearly laid down the procedure to (1) estimate maximum chain-
ing length, (2) find the probability distribution of chain fea-
ture points and estimate the parameters, and (3) calculate and
normalize boundary scores to discover story boundaries. The
experimental results show our approach outperforms previous
approach using lexical chaining. Our approach also performs
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Figure 3: This figure summarizes how to locate boundaries with
the scoring scheme. Initially the boundary score S(t) is calcu-
lated, whose value is subtracted by the running average to obtain
the normalized score Sx (t). We have the a priori knowledge
that the number of story boundaries is eight, and therefore the
utterance boundaries corresponding to the eight highest local
maxima are selected as the story boundaries.

more stably across news programs of different durations. In the
future, we aim at salvaging the missing boundaries we are not
able to capture in this work by incorporating other sets of fea-
ture, in particular prosodic features such as long pauses, speaker
changes and pitch resets, and possibly experimenting the seg-
mentation scheme with datasets of other languages.
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