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Realistic Mouth-Synching for Speech-Driven
Talking Face Using Articulatory Modelling

Lei Xie and Zhi-Qiang Liu, Senior Member, IEEE

Abstract—This paper presents an articulatory modelling ap-
proach to convert acoustic speech into realistic mouth animation.
We directly model the movements of articulators, such as lips,
tongue, and teeth, using a dynamic Bayesian network (DBN)-based
audio-visual articulatory model (AVAM). A multiple-stream struc-
ture with a shared articulator layer is adopted in the model to
synchronously associate the two building blocks of speech, i.e.,
audio and video. This model not only describes the synchroniza-
tion between visual articulatory movements and audio speech, but
also reflects the linguistic fact that different articulators evolve
asynchronously. We also present a Baum–Welch DBN inversion
(DBNI) algorithm to generate optimal facial parameters from
audio given the trained AVAM under maximum likelihood (ML)
criterion. Extensive objective and subjective evaluations on the
JEWEL audio-visual dataset demonstrate that compared with
phonemic HMM approaches, facial parameters estimated by our
approach follow the true parameters more accurately, and the
synthesized facial animation sequences are so lively that 38% of
them are undistinguishable.

Index Terms—Articulatory model, Baum–Welch DBN inversion
(DBNI), dynamic Bayesian networks (DBNs), facial animation,
mouth-synching, talking face.

I. INTRODUCTION

COMPUTER-ANIMATED talking faces have become
more popular in multimedia applications, such as news-

readers, online virtual avatars, video games, and videophones.
Experiments show that the trust and attention of humans to-
wards machines are able to increase by 30% if humans are
communicating with talking faces instead of text-only [1].
However, realistic facial animation still remains to be one of the
most challenging tasks despite decades of extensive research.
This is mainly due to the fact that the mechanisms of human
facial expressions are not yet well understood.

According to the underlying face/head model, talking faces
can be 3-D-model-based or image-based [2]. The former
approaches usually start with a mesh of 3-D polygons that
define the head shape, which can be deformed parametrically
to perform facial actions. A texture-image is mapped over the
mesh to render the skin and facial parts [3]. As another kind of
3-D approach, the physics-based animation makes use of laws
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of physics or muscle forces based on the anatomical structure
of a human face [4]. Targeting to video-realistic performance,
the image-based approaches [2], [5]–[8] use recorded image
sequences of faces and render the facial movements directly
at image level. Ezzat et al. [6] proposed a multidimensional
morphable model (MMM), which is capable of morphing
between 46 prototype mouth images statistically collected from
a small sample set. Cosatto et al. [2], [7], [8] described another
image-based approach with higher realism and flexibility,
which searched within a large database of recorded motion
samples for the closest matches. According to the input, talking
faces can be text-driven or speech-driven [2]. Although most
state-of-the-art text-driven talking faces employ concatenative
speech synthesizers [9], they still lack natural speech prosody
and emotions. Therefore, many researchers investigate how to
drive a talking face from real human speech, i.e., speech-driven.
These approaches use speech signals to generate more natural
facial animations with high fidelities of both audio and video.

The essential problem of speech-driven talking face is
mouth-synching: the synthesis of mouth movements matching
an input audio naturally. Actually, the mouth-synching problem
can be considered theoretically as an audio-to-visual conver-
sion (or mapping) problem, which is rather complicated due
to the co-articulation phenomena [10]. The 3-D-model-based
approaches usually use articulation rules [10] to capture the
speech dynamics, while the image-based approaches implicitly
model co-articulation by capturing and rewriting various video
segments of articulation. During the last two decades, machine
learning methods have been used extensively in the mapping
problem, such as vector quantization (VQ), neural networks
(NNs) [11], time-delay neural networks (TDNN) [12], and
hidden Markov models (HMMs) [5], [13]–[19], [21].

HMMs [13] have recently been used in mouth-synching. One
of the earliest HMM approaches was proposed by Yamamoto et
al. [14]. They trained HMMs from audio data, and aligned the
corresponding visual parameters to the HMM states. During
synthesis, they used the Viterbi algorithm [13] to collect a
time-labelled HMM state sequence, and then the visual param-
eters associated with each state were retrieved by mapping.
This simple approach achieved jerky animations since the
visual parameters were just averages of the Gaussian mixture
components associated to the current state, and these visual
parameters were only indirectly related to the current audio
input. Interpolating, splining and morphing might eliminate the
jerkiness, but these ad hoc solutions ignore the natural speech
dynamics, resulting in limited success [15].

To avoid jerkiness and preserve dynamics, Chen et al. [16]
proposed a least-mean squared HMM (LMS-HMM) method
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using joint audio-visual HMMs, where the visual output was
made dependent not only on the current state, but also on
the current audio input. They trained AV-HMMs using joint
audio-visual observations, and extracted the distributions of
audio HMMs from the AV-HMMs. The synthesis involved
two steps. First, an optimal state sequence was found using the
Viterbi algorithm. Second, the audio input and the Gaussian
mixtures associated to each state were used to derive visual
parameters by a least-mean-square regression.

Bregler et al. [5] described an image-based talking face called
Video Rewrite that used triphones (three consecutive phonemes)
to model co-articulations. Jerkiness was avoided by using more
speech segments and smooth concatenation of real video clips.
As a similar approach, Cao et al. [17] organized the phonemic
video clips by an Anime Graph, and proposed a greedy graph
search algorithm to improve the efficiency of the clip selection
process.

Since the above approaches solely rely on the phonemic se-
quences derived from speech recognition, the synthesis perfor-
mance heavily depends on the Viterbi search. If the speech is
contaminated by noise, the incorrect HMM state assignments
achieved by the Viterbi search may result in incorrect mouth
animation. Moreover, the Viterbi sequence may represent only
a small fraction of the total probability mass, and many other
slightly different state sequences are nearly as likely [15]. Brand
[15] proposed a remapping HMM method and an entropy mini-
mization training scheme in the Voice Puppetry, which enabled
the Viterbi sequence to capture a large proportion of the total
probability mass.

Choi et al. [18] presented a Baum–Welch HMM inversion
(HMMI) approach, thus avoiding the Viterbi search. As the dual
procedure to the Baum–Welch HMM re-estimation [13], HMMI
was first proposed for robust speech recognition [19]. Choi et al.
[18] extended this algorithm to audio-visual data space. After
training of audio-visual phoneme HMMs (we call this model
AVPM) using joint audio-visual observations, optimal visual
parameters were generated directly by Baum–Welch iterations
under maximum likelihood (ML) sense. Later they implemented
the HMMI in their Virtual-Face [20] in a netmeeting applica-
tion. More recently, Fu et al. [21] demonstrated that the HMMI
method outperformed the remapping HMM and the LMS-HMM
on a common test bed.

Even though these HMM-based approaches can provide rea-
sonable lip movements, they are still far from natural compared
with real recordings. This is probably because these approaches
adopt phoneme-based or word-based HMM modelling, which
do not incorporate any knowledge of the source that produced
the speech.

In this paper, we propose an audio-visual articulatory model
(AVAM) for mouth-synching in speech-driven talking face. In
contrast to phoneme-based HMM techniques, to reflect co-artic-
ulation explicitly and concisely, we use dynamic Bayesian net-
works (DBNs) to model the articulator actions, simulating the
speech production process. We propose the Baum–Welch DBN
inversion (DBNI) algorithm, which directly converts audio to vi-
sual parameters under ML criterion given the trained AVAMs,
preserving the speech dynamics. We built up an image-based
mouth animation framework to test the proposed approach. Ex-

perimental results show that compared with the AVPM [20] and
its triphone variant [5], the proposed AVAM can generate more
realistic mouth animations.

The following section describes our DBN-based articulatory
modelling technique. In Section III, the Baum–Welch DBN in-
version algorithm for audio-to-visual conversion is proposed in
detail. Section IV provides the objective and subjective evalua-
tions. Conclusions are drawn in Section V.

II. ARTICULATORY MODELLING

A. Motivations

The autosegmental phonology [22] holds the view that speech
is produced not from a single stream of phonemes, but from mul-
tiple streams of linguistic features. These features can evolve
asynchronously and do not necessarily form phonetic segments
[22]. Generally speaking, linguistic features include tone, du-
ration, and articulators. We know that speech is formed by the
glottal excitement of the vocal tract comprised of articulators
which shape the sound in complex ways. Therefore, a model
that directly simulates the articulator configurations could im-
prove the mouth-synching performance.

Our previous experimental results [23] on audio-visual
speech recognition have shown that articulatory models out-
perform the phoneme-based models and provide abundant
orofacial motion information which can improve the speech
intelligibility. Articulator modelling has many advantages such
as being better able to predict co-articulation effects. Further-
more, by modelling articulators, we allow asynchrony between
their configurations, which may more accurately model speech
production as autosegmental phonology has indicated. We have
also seen mounting evidences that a phoneme-based model of
speech is inadequate for speech modelling, especially for spon-
taneous, conversational speech. Phoneme-based models for
speech recognition do not explicitly incorporate any knowledge
of the speech production source. Moreover, speech recognition
systems based on articulator features (AFs) are more robust to
noise and reverberation [24].

Finally in view of visual articulation, since our goal is to de-
rive orofacial motions from speech signals, a model directly
analogous to the human articulatory system should better re-
flect the co-articulation phenomenon, leading to more realistic
facial animations. Current co-articulation engines in facial an-
imation are solely derived from physical gestural theories of
speech production, such as articulation rules of facial muscles,
while they ignore the consanguinity between visual speech and
audio speech. Facial animation may benefit from audio-visual
associations by directly describing the actions of lips, tongue
and teeth in the two building blocks of speech.

B. Dynamic Bayesian Networks

During the last decade, Bayesian networks (BNs) [25] have
become popular in many fields due to their great expressive
power and capability in inference and learning. Recently, the
use of BNs in speech modelling has gained much attention
[26]. Although HMMs are widely used in speech modelling,
they have inherent drawbacks in describing real-world speech
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Fig. 1. DBN representation of HMM.

Fig. 2. (a) Audio (or visual) articulatory model and (b) audio-visual articula-
tory model. For clarity, only two frames are drawn.

phenomena, such as gender and age differences, pronunciation
variability, and channel variability, due to their limited expres-
sive power. In speech modelling, the widely used left-to-right
HMMs allow only one hidden state in each time frame. In con-
trast, BNs have the ability to express arbitrary sets of variables
in each time frame and interpret causality between variables,
and offer a highly systematic and unified means to model the
details of speech phenomena.

Dynamic Bayesian networks (DBNs) [26] extend the BN
framework by representing multiple collections of random
variables as they evolve over time. Fig. 1 illustrates a simple
left-to-right HMM represented by DBN. Each time frame
possesses three variables: the hidden state variable, the mixture
variable and the observation variable. Compared with the
conventional HMM, time is explicitly depicted in the unrolling
DBN diagram, i.e., each time frame gets its own separate seg-
ment in the model. Fig. 1 represents exactly four time frames;
to represent longer time series requires more segments.

C. Articulatory Modelling Via DBNs

Although HMMs can model articulators by encoding every
possible combination of articulator values as a separate state
[27], this indirect modelling is cumbersome. DBNs provide
a fairly direct and natural way to mimic articulators, since
they allow for an arbitrary number of variables and flexible
model structures. Bilmes et al. [28] proposed a prototype of
DBN-based articulatory model for speech recognition with
multiple layers of variables explicitly representing words,
phonemes and sub-phonemes. We extend this model to solving
mouth-synching problem for speech-driven talking face.

Our articulatory model for a single observation stream (audio
or video) is shown in Fig. 2(a), which is called the Audio (or
Visual) Articulatory Model (AAM and VAM). Similar to that
in [28], a layer representing various articulators is incorporated
between state and observation variables. The state variable
usually describes phonemes or sub-phonemes. Each articulator
variable represents a particular kind of articulator feature,
such as voicing, velum, lipRounding, and tongueShow. The
articulator feature set and their values used in this paper are

defined in Section II-D. As indicated in [28], the value of an
articulator variable depends on its own value in the previous
frame as well as the current state. The dependency on its
previous frame is to model the natural continuity constraints on
feature values, since articulators cannot change from one value
to another totally different one without going through interme-
diate value(s). For example, lips cannot change from “round”
to “wide” without passing through “mid”. This model structure
also allows articulators to change their values independently
and asynchronously, reflecting the linguistic fact indicated in
Section II-A [22]. The local conditional probability distribution
(CPD) of is defined as

(1)

where and denote the observation and the mixture com-
ponent at time frame , respectively.
denotes the value set of the articulators at , and denotes a
possible value set of articulators. is the total number of mix-
ture components and is a multivariate Gaussian with
mean vector and covariance matrix , that is

(2)
where is the dimensionality of observation .

Compared with the articulatory model for speech recognition
in [28], our model removes the complicated syntax layers used
in word decoding, since we are not interested in the syntax
the utterance conveys, but how the visual observations match
the acoustic speech. Another difference in the model structure
is that we include a layer of mixture variables to describe the
causal probability between articulators and their outcomes–
observed audio or visual data.

To describe audio-visual speech in an articulatory way, we
further extend the model in Fig. 2(a) to multiple observation
streams as shown in Fig. 2(b). Correspondingly the Audio-
Visual Articulatory Model (AVAM) is composed of two ob-
servation streams each of which describes one modality of
speech—audio or visual. Since the audio and visual observa-
tions are generated from the same articulation source, only a
shared articulator layer is incorporated. As several articulators
such as velum cannot be observed visually and only visible
articulators contribute to the visual building block of speech,
visual observations are up-linked only to those visible artic-
ulators. Not only does the subtle structural design mimic the
true human articulatory system, but also reduces the number
of variables. This multistream structure also encapsulates the
synchronization between the audio and video, and may lead to
a better mouth-synching performance. Since not all articulators
contribute to the visual modality, we use separate mixture
variables for audio and visual streams.

D. Articulatory Features

Articulator features specify the states of vocal tract directly
or implicitly over time. For acoustic speech production, glottis,
velum, tongue and lips are the most important articulators [28].
Visual capture system records only the visible articulators such
as lips, frontal tongue, teeth, and jaw. These visible articulators
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TABLE I
ARTICULATOR FEATURE SET FOR ARTICULATORY MODELLING

affect the post formulation of uttering. Lipreading [23] exper-
iments tell us that these articulators do provide discriminative
information for linguistic classification.

Considering the variable space, computing complexity, and
coverage of phonemes, we manually define an articulator fea-
ture set (shown in Table I) for our articulatory modelling ac-
cording to the evolution of vocal tract. Note that lipRongding,
tongueShow and teethShow are visible articulator features di-
rectly corresponding to the actions of lips, tongue and teeth.
The features are subjectively quantized to discrete values based
on the physical actions or articulator manners. For example, the
velum usually has two actions, i.e., open and closed.

III. BAUM–WELCH DYNAMIC BAYESIAN NETWORK INVERSION

Since our DBN-structured articulatory model is designed
to output appropriate mouth shapes synchronized with audio
given the audio signal, we need an audio-to-visual conversion
algorithm. As described in Section I, Choi et al. [20] proposed
the HMMI algorithm, which directly generated visual parame-
ters under ML criterion from acoustic speech, eliminating the
Viterbi search and preserving the speech dynamics. Based on
their approach, we propose the inversion algorithm for DBNs,
namely Baum–Welch DBN inversion (DBNI) algorithm. We use
ML as the criterion to find the optimal visual parameters, i.e.,
mouth shapes, maximizing the likelihood of visual parameters
given the audio data and the articulatory model.

In the following, we first derive the DBNI for the model
topology with a single observation stream shown in Fig. 3(a).
The AAM/VAM illustrated in Fig. 2(a) fall into this case. Then
we present the DBNI for the model topology with multiple ob-
servation streams shown in Fig. 3(b), which is finally applied to
the AVAM in Fig. 2(b) for audio-to-visual conversion.

According to the Baum–Welch algorithm [13], optimal obser-
vations can be found by iteratively maximizing the Baum’s
auxiliary function [29] , i.e.,

(3)

where and denote the old and new observation sequences
in the observation space respectively.

In the DBN topology as illustrated in Fig. 3(a), we con-
sider to be the only observed data
and their underlying hidden parents.
Mixture variables which are also parents of are denoted by

, and other hidden variables are denoted
by . Thus, the variable set in time frame
is composed of . As described in the expectation
maximization (EM) algorithm [30], the incomplete-data likeli-
hood function is given by , whereas the complete-data
likelihood function is . Given , , , and a
well-trained model parameter set , according to the Markov
property of independent relationships between variables, the
likelihood of the complete-data can be formed as follows:

(4)

where denotes a particular value of the hidden variable in
frame . The immediate predecessors of are referred to as its
parents, with values in frame , and is the number of
hidden variables of a time frame. The auxiliary function can be
explicitly expressed as shown in (5) at the bottom of the page,
where , , and denote the possible sequences of ’s hidden
parents, possible sequences of other hidden variables and pos-
sible mixture segmentation sequences, respectively. By taking
the derivative of the auxiliary function with re-
spect to to zero, we get

(6)

where denotes the number of possible value sets of other
hidden variables, and denotes the number of possible value

(5)
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Fig. 3. (a) DBN topology with a single observation stream and (b) DBN topology with multiple observation streams. An elliptical node denotes a group of
variables, while a round node denotes a single variable. A wide arc represents multiple dependencies between nodes, and a slim arc represents a single dependency
between nodes. The dotted wide arc sketches the time dependencies among nodes between two consecutive frames.

sets of hidden parents of observation . For clarity, we define
a new quantity .

Thus, we can find the re-estimated inputs by

(7)

where can be computed using the frontier algorithm
[31].

For audio-to-visual conversion, the problem is to estimate
missing visual parameters based on well-trained AVAMs and
the audio input given. Thus, we extend the DBNI to multiple
observation streams [as shown in Fig. 3(b)] to convert audio
input to optimal visual parameters under the ML sense. Sim-
ilar to the DBNI for a single observation stream, we can easily
get the re-estimated visual parameters by

(8)

where and denote the audio and visual streams respectively,
and can be computed through the frontier algo-
rithm [31].

Equation (8) shows that the DBNI is able to move the visual
observations closer to the mean of a visual Gaussian
mixture by fixing the mean location of each mixture, while still
retaining the original distributions of visual data. The calcula-
tion of in (8) involves observations of both audio and visual
data, and the shared layer of articulators. Thus, this calculation
process incorporates both modalities of speech. Moreover, since
the estimation of involves all possible values of hidden vari-
ables, the estimated visual parameters are more likely to ap-
proach the global shape of the actual parameters.

IV. EXPERIMENTS

To evaluate the performance of the proposed mouth-synching
technique, we have carried out extensive experiments on an
image-based mouth animation approach. We have compared

Fig. 4. Block diagram of the experiment setup.

our method with the AVPM [18] (which uses the HMMI [20]
algorithm as its audio-to-visual conversion method) since they
both use integrated audio-visual models with similar conver-
sion mechanisms. Also, the AVPM is a typical phoneme-based
model which can generate reasonable lip movements. There-
fore, it is appropriate to benchmark our AVAM which makes
use of a novel articulatory modelling technique. Since triphones
have been used recently to capture co-articulation effect for a
considerable success [5], we also have compared our method
with a triphone approach which can be considered as an exten-
sion of AVPM. This approach also uses the HMMI algorithm
as its conversion method, and is named as AVTM (audio-visual
triphone model).

A. Experiment Setup

Fig. 4 shows the block diagram of the experiment setup,
which involves audio and video processing, audio-visual mod-
elling and audio-to-visual conversion.

1) Audio-Visual Dataset: We used the JEWEL audio-visual
dataset [32] in the experiments, which contains 524 recordings
of one female speaker uttering sentences from the TIMIT
corpus. The training set is composed of two SA sentences and
450 SX sentences, and the testing set contains 72 SI sentences.
In the dataset, the speaker’s head-and-shoulder front view
against a white background is shot by a digital video camera in
a studio environment, where synchronized audio and video are
recorded. The audio is acquired at a rate of 16 Hz with a 30 dB
SNR. The video is of 720 576 pixel in dimension, interlaced,
captured in RGB color at 25 frames/s. In total, the audio-visual
recordings are about 2500 s in duration. The speaker’s mouth
region is extracted and normalized [23].

2) Audio and Video Processing: Mel-frequency cepstral co-
efficients (MFCCs) as well as their velocity and acceleration
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Fig. 5. PNMEs for 72 JEWEL testing utterances (top) and 90 visual parameters (bottom).

derivatives were adopted as audio features, leading to a set of
39 parameters for each frame. Principal component analysis
(PCA) was implemented to the red, green and blue channels of
1500 representative mouth images chosen from the training set,
generating a set of eigenlips. A mouth image can be approxi-
mately represented by a linear combination of these eigenlips.
The combination weights (i.e., PCA coefficients) were used as
visual parameters. In total, a set of 90 visual features (30 for
each channel) was collected for each video frame. Visual fea-
tures were up-sampled to 100 frames/s to meet the audio feature
sampling rate (100 Hz).

3) Audio-Visual Modelling: In the AVPM system, a set of 47
three-state, left-to-right phoneme HMMs was trained using the
Baum–Welch algorithm [13]. We performed an iterative mix-
ture splitting approach, and achieved five continuous Gaussian
mixtures for each HMM state describing the distributions of
audio-visual signals. It should be noted that silence (“sil”) and
short pause (“sp”) were included in the model set. We trained
327 context-dependent HMMs including triphones, biphones,
and phonemes for the AVTM system according to the avail-
ability of the corresponding training data. They had the same
model topology with the phoneme models in the AVPM system.

In the AVAM system, we trained the AVAMs whose structure
is shown in Fig. 2(b). The state variables represent the English
sub-phonemes, and a set of 6 articulator variables describes the
articulator features defined in Table I. To make a comparative
study, we designated a set of 141 values (47 3) to the state vari-
ables, corresponding to the 47 three-state phoneme HMMs in
the AVPM system. The CPDs were
trained using the standard EM algorithm [30]. According to the
model structure illustrated in Fig. 2(b), a set of 5 continuous
Gaussian mixtures for each possible combination of articula-
tory feature values was trained for the audio and visual streams,
respectively. We designed a phoneme-state-to-articulators map-
ping table according to the English phonetics, and other CPDs in
Fig. 2(b) were trained using a supervised learning method [23].
Considering the physical constraints among the articulators [23]

and the dataset context, we trained totally 472 and 236 sets
of Gaussian mixtures for the audio and visual streams, respec-
tively. In all the systems, we used manually labelled phoneme
level transcriptions as well as frame-synchronized audio-visual
features during the training process.

4) Audio-to-Visual Conversion: During audio-to-visual con-
version, the AVPM and AVTM systems used the HMMI algo-
rithm [20], and the AVAM system used the proposed DBNI al-
gorithm. The global mean of all visual Gaussian mixtures was
used as the initial values of visual parameters. According to the
convergence property of EM, the estimated optimal visual pa-
rameters were collected framewise for a dataset utterance within
a very few iterations.

B. Objective Evaluation: Estimation Error

We have carried out objective evaluations by directly com-
paring the visual parameters estimated by the 3 testing sys-
tems with the real parameters extracted from the original video.
To make a quantitative evaluation, we have calculated the per-
centage normalized mean error (PNME) for each testing utter-
ance (72 in total) of the JEWEL dataset and for each visual pa-
rameter (90 in total). The PNMEs for utterance and visual pa-
rameter are defined, respectively, as

(9)

(10)

where denotes the frame number of utterance (
), and and denote the actual and esti-

mated visual parameter ( ) after normalization
for frame in utterance respectively.

The PNME curves in Fig. 5 reveal that the proposed AVAM
system can effectively reduce the estimation errors in terms of
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Fig. 6. Estimated visual parameter (red solid line) by the AVAM system versus actual parameter (black dotted line) trajectories for eight testing utterances from
the JEWEL dataset.

PNME as compared with the AVPM system. With the introduc-
tion of context dependent HMMs (triphones and biphones), the
AVTM system can also reduce the PNMEs as compared with
the AVPM system. However, the proposed AVAM system per-
formed the best among the three testing systems. On average the
AVAM system reduced the PNME by as much as 8.0% as com-
pared with the AVPM system; and 5.6% as compared with the
AVTM system.

Fig. 6 depicts some examples of the trajectories for the first
visual parameter for eight testing utterances in the JEWEL
dataset. These trajectories were generated by the AVAM system
using the DBNI conversion algorithm, and further smoothed
by a mean filter with a 3-frame width to remove jitter. We can
clearly observe that the estimated visual parameters match the
original ones very well.

C. Objective Evaluation: Audio-Visual Speech Recognition

Since the use of visual speech information in addition to audio
is able to effectively improve speech understanding in noisy
conditions [23], we have conducted audio-visual speech recog-
nition (AVSR) experiments for a more perceptual evaluation of
the estimated visual parameters. Ninety visual parameters (es-
timated or the ground truth) were combined framewise with
39 MFCC coefficients to improve the speech recognition rate
under noisy acoustic conditions. Different from direct compar-
ison in terms of estimation error (Section IV-B), this evaluation
provides a way to quantify the amount of lipreading informa-
tion contained in the estimated visual speech. We have used the

multistream HMM (MSHMM) [23] as the audio-visual fusion
scheme, which is a popular model in the AVSR literature due
to its ability to model the reliability of audio and visual streams
easily and effectively via the following weighted fusion:

(11)

where the stream reliability is described by stream exponents
and .

We manually corrupted the audio data in the JEWEL
dataset with additive speech babble noise at various SNRs
(28 dB, 25 dB, 23 dB, 20 dB, 15 dB, and 10 dB). Matched
training-testing conditions were considered in the experiments
to accurately measure the influence of the visual parameters
on recognition performance. At each testing SNR, audio from
the JEWEL training set was used to train the 47 three-state,
left-to-right, state-synchronous, five-continuous-Gaussian-mix-
ture, phoneme MSHMMs; and audio from the JEWEL testing
set was used for a recognition test. Note that the visual pa-
rameters used for MSHMM training and recognition test were
estimated from the the noise-free ( dB) audio or
extracted from the original data. Stream exponents were em-
pirically selected a priori on a small development set for each
testing SNR by minimizing the word error rate (WER). Ac-
cording to the different sets of visual parameters, we built four
AVSR systems, namely MSHMM-AVPM, MSHMM-AVTM,
MSHMM-AVAM and MSHMM-Act (actual PCA param-
eters). An audio-only (AO) system with 47 conventional
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TABLE II
AUDIO-VISUAL SPEECH RECOGNITION RESULTS IN TERMS OF WER

left-to-right, three-state, five-continuous-Gaussian-mixture,
phoneme HMMs was also built to benchmark the experiments.
All the systems were developed using the HTK Toolkit 3.2
[33]. The experimental results are summarized in Table II.

As can be seen clearly, the performance of the AO system
is heavily affected by acoustic noise. Analysis unveils that lots
of insertion errors occur when speech is contaminated by the
babble noise, which contributes significantly to the WER. This
indicates that even matched training-testing condition is con-
sidered, the additive noise still severely affects the recognition
performance. Not surprisingly, with the help of the visual infor-
mation, all the testing AVSR systems outperform the AO system
under noisy conditions. The MSHMM-Act system, which uses
the actual visual parameters extracted from original videos, per-
forms the best. The MSHMM-AVAM system, which uses the
visual parameters estimated by AVAM and DBNI, performs the
best among the three systems using estimated visual parameters,
and observed the closest WERs with the MSHMM-Act system.
Its relative reduction in WER compared to the AO system ranges
from 7.7% for a noisy audio with a 28 dB SNR to 27.9% for a
noisy audio with a 10 dB SNR. Indeed, the overall results clearly
demonstrate that the lipreading information provided in our es-
timated visual parameters is capable of significantly reducing
speech recognition error under noisy conditions.

D. Subjective Evaluation

1) Performance Refinement: We have carried out subjective
evaluation which compares the synthesized image sequences
with the original recordings. The synthesized mouth sequences
were realized from the estimated visual parameters through
PCA expansion. Although the PCA-based visual parameters
have already represented the most significant statistical vari-
ances of the speech-related mouth appearance, the mouth
images resembled by PCA expansion still lack fine details due
to the low dimensions of the visual parameters. Introducing
more visual parameters will result in more prediction errors
due to the problem of data sparseness. Therefore, we used
a performance refinement process to improve the realism of
the animation. We selected a set of 500 typical mouth images
(normalized) from the JEWEL dataset, and saved their full-di-
mension PCA components (1500 here) to a candidate set
(green channel for example)

(12)

where , , and denotes the PCA
coefficient vector for the green channel. We chose the visual

parameters as the fine detail augments of green channel of
frame using the following criterion:

(13)

where denotes the estimated visual parameters. Therefore,
the visual parameter vector will be . The mouth images
were resembled by PCA expansion using the full visual param-
eter vector. Fig. 7 demonstrates some snapshots from a mouth
animation sequence synthesized by the AVAM system for an ut-
terance from the JEWEL dataset.

2) Driving a Talking Face: We have built up a prototype
of taking face system. To avoid the “zombie”-like effect and
make the talking face more natural, a 4-layer overlaying process
was adopted, in which the synthesized mouth frames, the cor-
responding jaws, eye blinks, and the base faces are sewed up to
generate a facial animation sequence.

As head movement is important for facial animation to ap-
pear natural, five recorded snippets with neutral expressions and
tiny head movements were selected as the base face sequences.
This also ensured that the viewers mainly focused the evalu-
ations on the mouth articulation. The head pose, eye and jaw
positions were manually annotated for exactly stitching the fa-
cial parts with the base face in the overlaying process. An eye
blink process were also extracted and saved. A set of 28 typical
jaw image masks with different downward actions in articula-
tion was collected.

In the overlaying process, a base face sequence was randomly
selected from the snippet set. The eye-blink sequence was in-
serted once in each -s period ( ). We associated an
appropriate jaw from the jaw candidate set to each synthesized
mouth according to the mouth opening scale and the waveform
energy. To avoid any boundary artifacts, we used the Poisson
cloning technique [34] to merge together the four layers ac-
cording to the annotated tilting angles of head pose, eye, and jaw
positions. Fig. 8 shows some snapshots from our talking face.

3) Subjective Evaluation: Two type of subjective assess-
ments were performed: scoring test and Turing test; and a
group of 20 viewers with no prior experience were involved.
To get a fair evaluation focused on the mouth animation and to
separate the different factors influencing the speech perception
[2], mouth region was cropped from the 72 original full-face
video, and overlaid to the base face using the same 4-layer
overlaying process, named original video (Ori). Prior to testing,
we randomly named and mixed together the synthesized videos
(by AVPM, AVTM, and AVAM) and the Ori videos in AVI
format from the JEWEL testing set, achieving a set of 288
(72 4) videos with accompanied real audio. The video set
was separated to five sessions in order to avoid any unfair
judgements from viewers due to fatigue and boredom. In each
test session, we randomly presented the videos to the viewer.
The viewer was first asked to score each video in terms of
naturalness of the uttering mouth matching the audio, namely
scoring test. A five-point assessment was adopted (1: Bad, 2:
Poor, 3: Fair, 4: Good, and 5: Excellent). Then the viewer was
asked to judge whether the video was synthesized artificially
or real recordings, i.e., the Turing test. We did not perform
simultaneous side-by-side presentations of the synthesized
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Fig. 7. Snapshots from the synthesized mouth sequence (25 frames/s) for the utterance “Scientific progress comes from the development of new techniques.”

Fig. 8. Some snapshots from the speech-driven talking face.

and real videos, because the viewers would have shifted their
gaze from one to another while the utterance was played. As a
negative effect, the viewers could have compared local features
but not the impression the moving mouth would have given
throughout the video. The results of scoring and Turing tests
are summarized in Table III and Fig. 9, respectively.

TABLE III
SCORING TEST RESULTS

Fig. 9. Turing test results.
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Table III shows that the viewers give relatively high scores
to the synthesized videos generated by the AVAM and AVTM
compared with those of AVPM. On average, 23 synthesized
videos by AVAM (in total 72) are given the highest score,
which is close to that of Ori videos (28 out of 72). Among
the three testing systems which synthesize mouth animations
from speech, the proposed AVAM system performs the best
with a mean opinion score (MOS) of 3.7. It is interesting that
the viewers did not unanimously give the original videos the
excellent score, this is mainly because prosodic movements
of mouth exists in the small mouth region cropped from the
original recorded videos, therefore acentric movements are
considered as weird and unnatural.

For image-based talking faces, the ultimate goal is to produce
animations that pass the Turing test, that is, that viewers cannot
distinguish between animations and real recordings. The Turing
test can be quantified in terms of correct identifying rate (CIR),
which is defined as

(14)

Fig. 9 illustrates the boxplot of CIR calculated on the 20
viewers. The inter-quartile ranges (IQRs) of AVPM, AVTM,
AVAM and Ori are 78–84%, 67–73%, 63–67%, and 83–92%.
On average, 18%, 29%, and 38% of the synthesized videos by
AVPM, AVTM, and AVAM are detected as real recordings,
while 13% of the real recorded videos are mistakenly con-
sidered as synthesized video. Although the viewers had quite
different judgements on whether each video was real or artifi-
cially synthesized (a wide CIR range), the majority opinions
indicate that for 38% of the videos synthesized by our AVAM
system, the viewers were unable to tell whether the presented
video was a synthetic one or a real one.

V. CONCLUSIONS

This paper presents an articulatory modelling technique for
realistic mouth-synching in speech-driven talking face. Moti-
vated by the fact that mouth movement is originated by artic-
ulation, we directly model the configurations of articulators,
such as lips, tongue and teeth, using a DBN-based audio-visual
articulatory model (AVAM). Audio speech and visual speech
are synchronously associated by two streams, and a shared ar-
ticulator layer is incorporated for both streams. This structure
not only reflects the consanguinity between facial expressions
and audio speech but also depicts the linguistic fact that dif-
ferent articulators evolve asynchronously. To output appropriate
mouth sequences with natural speech dynamics, we present a
Baum–Welch DBN inversion (DBNI) algorithm, which con-
verts audio to optimal visual parameters by maximizing the like-
lihood of the visual parameters given the audio data and the
AVAM.

We compared the proposed AVAM with the audio-visual
phoneme model (AVPM) and its triphone variant (AVTM)
by both objective and subjective evaluations on the JEWEL
audio-visual dataset. Objective evaluations show that compared
with AVPM and AVTM, the proposed AVAM can effectively
reduce the estimation errors on the visual parameters, and re-
sultant parameters match the true parameters more accurately.

AVSR experiments also show that with the help of the esti-
mated visual parameters, recognition error rates are effectively
reduced under noisy acoustic conditions. We have built up
a prototype of talking face to make subjective evaluations.
Results show that synthesized animation generated by the pro-
posed AVAM matches the corresponding audio naturally. More
encouragingly, 38% of the synthesized animation sequences
generated by the AVAM are so lively that the viewers could not
even distinguish them from the real recordings.

Since articulatory modelling has been proven more robust
to ambient noise [24], we are currently trying to realize nat-
ural mouth-synching under adverse acoustic conditions. Finally,
as DBNs have great expressive power, emotions that speech
convey may be encapsulated and converted to visual parame-
ters, achieving an expressive talking face.
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